caBench-To-Bedside Design Document

caBench-To-Bedside
Design Document
Version 1.0

[Insert approval date of document]

Revision History

Date Version Description
March 6, 2007 1.0 Draft document
July 29, 2007 1.0 Updated for beta release

Page 1

caBench-To-Bedside

Design Document

Index
1 INTRODUCTION 6
2 HIGH LEVEL ARCHITECTURE 7
2.1 OVERVIEW ..tiiiieieee ettt ettt e e e e ettt ae e e e e e eeeaaaaaeeeeeeeeesaaaaaeeeesseeaaaaeseeesseanatsereeeseeennsaaareeeees 7
2.2 WHY CAB2B USES CLIENT-SERVER BASED ARCHITECTURE?uuvvviiiiiiiiiiiiieieeeeeeeiireeeeeeeeeeeinaneeeees 7
2.3 CLIENT-SERVER COMMUNICATIONcetttttiiiiiiiieiiieeeieieeeieeeeeeeeeeeeeeeeeeeeeeeeeseeereseseeeserereseeerererereeereeees 8
3 METADATA REPOSITORY 11
T R 14 21 287/ 1 20 RPN 11
3.2 WHATIS DYNAMIC EXTENSIONS? ...oooiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee ettt e e e e e e ee e e e e e eeeaeeeeeeeeeeenesenenens 11
3.3 STORING UML MODEL......ccootttiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeee et e et et et et e eerererareeens 12
3.4 PATH GENERATION MODULEcoootttiiiiiiiiiiieieieeeseeeseeeeeeeseeeeeeeeerererereeens 13
I T O 42 € 16) 23 TR RRRRRRRPRRR 15
3.0 METADATA CACHEcooottteeeiee e ettt e eeea et e e e e ee st e e e e e eeesaaaaeeeeeeeesataaseeeeeeessstaareeeeeseensrareeeeas 18
4 METADATA SEARCH 20
A1 OVERVIEW .ooeiiiiieiiiieeee ettt e e ettt e e e e e e eetaaa e e e e e e eeesataaseeeeeeeaataaseeeeeessesasaseseeeeeeatasseeseessennanrees 20
4.2 BACKEND IMPLEMENTATIONcccceiitiutreeeeeeiieiiiteeeeeeeeeesisrereeeeeeesssssseseeeesssssssessesssssssssesssessonssnees 20
4.3 USER INTERFACEuvvviiiiiiiiiiteieee e e eeeeeeeee e e e eeeeatteeeeeeseesataaeeeeeeeesataaseeeeeeeseasaseseesesessanseeseessennnnees 22
5 QUERY OBJECT 24
T B 14 21 2874 1 21 PRI 24
R O 07N) VX € 27N Y SRR 25
6 QUERY ENGINE 26
(ST T 0 14 21 287/ 1 21 TR 26
0.2 CLASS DIAGRAMooiiiiiiiiiiieieeeeeeeeieeeee e e e eeeaaeee e e e e eeesaaaeeeeeeeeesataareeeeeeesataeseeesesessstasseeeeessensrsreeeees 26
6.3 SEQUENCE DIAGRAM.uuutiriiiieeiiitieeeeeeeeeeeiiaeeeeeeeeeesiareeseeseeesiaseseseseeessstaeseeeeeeessstasreeeeessensrsreeeees 28
0.4 FLOWGCHART ...uuvttvieieee e ettt e et eeeetee e e e e eeeaaa e e e e e e eeesaaaaeeeeeeeeesaataareeeeseesataeseeeseeessstasseeeeeeeensrareeeeas 29
[T DV.VA '@ 1) §N VN B V27N § (0)\ [PPSR 29
7 CUSTOM UI COMPONENTS 32
T 1 OVERVIEW ..ttt eeeete e e et et et e e e e e eeaaaa e e e e e e eeeaaaaaeeeeeseesataeseeeeeeessatasseeeeeseensssareeeees 32
7.2 LIST OF CUSTOMIZED COMPONENTSccettttttiiiiiiieiiieieteeeeeeeeeeeeeteeeteeeseeeeeeeeereseeeteseeetesererereeerererererens 32
AT V.-V A ' VN 23 0 2.7 (6] 5) =) SRR 33
8 DYNAMIC UI GENERATION FOR ADD/EDIT LIMITS 36
LI B O AV 23 24 | 1 36
8.2 DESIGN ..o 36
9 VISUAL QUERY INTERFACE OR DIAGRAMMATIC (DAG) VIEW 40
0.1 OVERVIEW ...iutiiieieee oottt e ettt e e e e ee e e e e e e eeaaaa e e e e e e eeesaaaaaseeeeeeesaataeseeeeeeesastasseeeeeesenssrareeeees 40
9.2 USER INTERFACE DESIGNcccciiiiiiiiiiiiieeiieiiieeeeeeeeeeiiaeeeeeeeeeesiaaeereseeseesissssseeeeseesstassesssessenssssreeees 41
9.3 QUERY BUILDINGccootiiiiiiiiieitiie ettt e ettt e ettt e e et e e e e ta e e e eaaaeeeavaeeesatseeeeasaseeetresesensseeennsneas 43
10 PAGINATION SWING COMPONENT 45
10.1 OVERVIEW ...ovvviiiiee ittt et eeettee e et ee et e e e e e eeeaaaaeeeeeesenaaaaeeeeeseeesaataaeeeeeesasstaaseseeeeesnnrarreeeeas 45
10.2 D) 28] (€1 D) 235 VN § 5RO 45
11 SEARCH DATA WIZARD 52
11.1 (6% 21 3871 2 R 52
11.2 CLASS DIAGRAMccooiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee et 52
11.3 SEQUENCE DIAGRAMccooiiuiiiiiee e eeciiieeee e e eeeeetttt e e e e e eeettaaeeeeeeeeeaataeeeeeeeeesasseeeeeeeeeanrreseeaeeenes 53

Page 2

caBench-To-Bedside Design Document

12 VIEW RESULTS 55
13 RECORD CUSTOMIZATION 57
13.1 (02423 231 121 O TRRRRRPRRT 57
13.2 WHY CUSTOMIZE IRECORD?ccooiiiiiiiiiiee et 57
13.3 STEPS IN CUSTOMIZING A RECORD......ciiiieieieeieeseeeseseseeeeeaeeesenens 57
13.4 RESULT CONFIGURATION XMLoooiiiiiiiiiiiiiiieee e 58
13.5 TRECORD AND ITS EXTENSIONS ...cooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e et e e et e e et eeeeeeeeeeeeeees 59
13.6 QUERY RESULT TRANSFORMERSccuttteeittieeeierteesserieeessseessassesessssesessssessssssseesssseesssssessssssees 60
13.7 DATA LIST TRANSFORMERSccootiiiiiiiiiiieeeeeeeeeeeeeeeeeeee ettt ettt ettt e e e et e e e e e e e e e e e e e e eeeeneeees 62
13.8 RESULT RENDERERSoceviiiiiiiiititeteeeeeeiitaeeeeeeeeeessissreeeeeesenssssesssessesssssssseesesessssassesessssmsssrsesees 65
14 DATA LIST 67
14.1 OVERVIEW ...vvtviiiiei ettt e et eeette et e et eeseataa et e e e e e eeeaaaaeeeeeesenaaaaeeeeeeeeessstaaeeeeeeeenstaaseeeeseesnnrarreeeeas 67
14.2 VIEW DIATA LIST .ioiiieeeee e ettt e eeeette e e e e e e eeaae e e e e seesaaaaeeeeeeeeesassaeeeeeeeeesstaaseeeeeeensnraereeeeas 67
14.3 DATA LIST OPERATIONScoiiiuuuiiriieeeeeiiitteeeeeeeeeeeiisareeeeeesesssasesssessessissssseesesesissssssessssmmssssesees 68
15 EXPERIMENT 70
15.1 (6% 21 3871 2 R 70
15.2 EXPERIMENT DATA MODELcccooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt eeeees 70
15.3 SAVING AN EXPERIMENTciiiiiiieiiieieieieeesseeseseseessssssesssssesssesssssssssesenes 70
15.4 OPENING AN EXPERIMENTcooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee ettt ettt ettt e e e e e e e e e e e e e e e e eeeeeees 71
15.5 CUSTOM DATA CATEGORYcooiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee ettt ettt e e e e e e e e eeneaees 73
16 CHARTING 75
16.1 OVERVIEW ..vttviiiiii ettt eeeeeette et e et e e e eeeeeeseaaaseeeeeesenaaaaeeeeeseeesaataaeseeeeeasstaaseeeeseessnsaareeeeas 75
16.2 CLASSES INVOLVEDuvviiiiiiiiiiitieeieeeeeeeeee e e ettt e e e e s eeaaaae e e e e e eeenaaaaaeeeeeeeenstaaseeeeeeesnnrarseeeeas 75
16.3 SEQUENCE DIAGRAMccottiutttrieeeeeeiittereeeeeeeeetteeeeeeeeessssaareeseeeseasasaesssesseesissereeesseesirrereeeseennns 76
17 FILTERS 77
17.1 OVERVIEW ...vviviiiieiiieiitee et eeette et e et eeetaae e e e e eeseaaaaeeeeeesesaaaaeeeeeseeesaataaeeeeeeeesstaareeeeeeennnrsareeeeas 77
17.2 (@ 57N SR Y6 DAY =1 o TR 77
17.3 SEQUENCE DIAGRAMccoeiitutttieeeeeeeiiitreteeeeeeeseitteeesaeeeaeeesssseeeseeseasssseseseeseasissseseeeseesairssseeeseenans 79
18 ANALYTICAL SERVICES INVOKER 80
18.1 (0% 21 3871 2 R 80
18.2 ENTITY TO ANALYTICAL SERVICE MAPPING XMLccooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 80
18.3 (@ 57N S 1AV A4 21 0 TR 81
19 APPENDIX 82
19.1 DYNAMIC EXTENSION AND MDRcooiiiiiiiiiiiiiiiiee ettt 82

Page 3

caBench-To-Bedside Design Document

List of Fiqures

Figure 1 caB2B Client-Server ArChiteCtureooo i 7
Figure 2 Example of client server communication via an EJB 100KUP........ccooveiiiieiiiiiieeiieeee 9
Figure 3 Class diagram showing usage of EJB with PathFinderBean examplecccccccceeennen. 10
Figure 4 Classes involved in storing UML model 1o MDRooiiiiiiiii e 12
Figure 5 Class diagram of Path Generation Moduleccoouiiiiiiiiiiiee e 14
Figure 6 diagram for Classes iN CAEQOIYoiuiiii i 15
Figure 7 Sequence diagram saving @ CatEQOIYc.euiiiiiiieieiiee ettt 16
Figure 8 Category XIML SITUCTUIEoueiiiiee ettt ettt sttt st e e ne e sane e e 17
Figure 9 Example of Category XML fil©.......ccuei i 17
Figure 10 Classes involved in category Creation............uoiueiiiiieiiee et 18
Figure 11 Classes in Metadata cache module ... 19
Figure 12 Classes- Metadata Search backendcccooiiiiiiiic e 21
Figure 13 Classes- Metadata Search user interfaceoooueviiiiiiiiriiee e 23
Figure 14 Interfaces that compose the query ObjJeCtcooviiiii i, 25
Figure 15 Interfaces and classes that compose the query engine.........ccccvviiiiiiiie e, 26
Figure 16 Sequence diagram to show how a query is executed and results are returned 28
Figure 17 Detailed steps within the QUEIryEXECULONooiiiiiiiii e 29
Figure 18 Sequence diagram - Lazy Initialization ..o 31
Figure 19 Classes Involved in Lazy Table Model component...........ocooeiieriiiiiieeeniee e 34
Figure 20 Flow of events in displaying BDQ)ooiiuiiiiiiiiei e 35
Figure 21 Snippet of DTD used for dynamic Ul configuration XMLcccocoiiiiiiiininiien e, 37
Figure 22 Detailed steps for generating Ul component for an attributecccooviinninnnen. 38
Figure 23 Class diagram for classes participating in dynamic Ul generationcccecveeeennneen. 39
Figure 24 Basic WOrkflow in the DAGcoo i 41
Figure 25 Class diagram for classes in the DAG VIEWcoocuuiiiiiiiiiiiiiiee e 42
Figure 26 Class diagram for classes related to ambiguity resolver.........ccccoveiiiieeeniiiee e, 43
Figure 27 Client query builder interface for client side query building........ccoccccvviiieiniieceen. 44
Figure 28 Snapshot of a Pagination COMPONENTcouiiiiiiiiiieie e e 46
Figure 29 Classes involved in Pagination Componentooeioiiiiiiiinien e 49
Figure 30 Pagination Sequence Diagramc.coiii ittt rae e seeas 50
Figure 31 class diagram for the Search dialog Wizardccceeiiriiiiiiien e 52
Figure 32 sequence diagram for navigation from step1 to step2 in the wizard...........c.ccceeernnenn. 54
Figure 33 Classes involved in displaying qQUEery reSUltS.........coouiriiiiiiir e 55
Figure 34 Order of instantiation of panels for view results ..., 56
Figure 35 Sample ResultConfiguration.XmMl..........ccociiiieiiiie e e 58
Figure 36 IRecord and itS @XIENSIONSueiiiiiiiie et 59
Figure 37 Query Result TranSformMerso e 61
Figure 38 Query Result tranSfOrMerso e 62
Figure 39 Data list savers and faCtory ... s 63
Figure 40 Data liSt FELHEVEIScoi i e e 64
Figure 41 Caarray extensions for data list Operations..........ccocueeiieeiiir e 65
Figure 42 Result Panel MOE!ooiiiiiieieie et 66
Figure 43 Flow of events while displaying reSURSc.eeviiiiiiiiiiii e 66
Figure 44 Classes involved in displaying data-list..........ccoociiiiiniinii e 67
Figure 45 Sequence diagram for retrieving records of a data listcccovrieiineiie i, 68
Figure 46 Sequence diagram for saving records of a data list...........ccceveeriinnce e, 69
Figure 47 Experiment data MOElueiiiiiiiii e 70
Figure 48 Flow of evens for Saving eXPeriment.........ooo i 71
Figure 49 Experiment Ul MOEL.........coo it 72
Figure 50 Flow of event for Open EXPeriment..... ... 73
Figure 51 flow for saving the custom data category..........coooiiiiiiiiiei e 74
Figure 53 Classes Involved in Charting..........coooiei it 75
Figure 54 Flow of events happening during chart generationcccoecveeiiiiiiiiinieee e, 76
Figure 55 Classes Involved in Filtering dataoceioiiiiii e 77

Page 4

caBench-To-Bedside Design Document

Figure 56 Flow of events happening when user applies a filter ..., 79
Figure 1 Sample EntityToAnalyticalServiceMapping.Xml.........cccooceeiiieinmeeiiee e e 80
Figure 2 Classes involved in getting and invoking analytical services..........ccccvvveviviiecnceennen. 81
Figure 57 Metadata Repository backboneoccueiiiiiiiii e 82
Figure 58 Dynamic extension basic metadataoooiueiiiiiiiiiiiiiie e 83
Figure 59 Attribute Type Metadata........ccuveiiiiiiiii e e 84
Figure 60 Inheritance Metadata...........ooouiiiiiiiiii e 85
Figure 61 Attribute Data EIEMENTScooieiiiiiieee e 86

Page 5

caBench-To-Bedside Design Document

1 Introduction

This document explains the design of the components and modules present in caBench-To-
Bedside (caB2B) project. It provides details of different components that are being developed as
a part of caB2B application and may be shared across other applications.

Page 6

caBench-To-Bedside Design Document

2 High Level Architecture

2.1 Overview
This section describes the overall architecture and high level design of the caB2B.

The caB2B application is a highly user interaction-rich application that will allow the user to
perform the following:
e Search and query different grid enabled data services to acquire data sets of interest
e Save data sets and create an ‘experiment’ in order to analyze and visualize this
information
Perform different analyses using different grid enabled analytical services
Visualize analysis results using a rich collection of windows
Execute workflow jobs, time-taking queries, or analyses asynchronously
Share experimental result amongst multiple caB2B users

The caB2B application has a client-server based architecture.

The caB2B client is a desktop application (implemented in Java Swing) which provides the user a
graphical user interface to search for data sets of interest, create experiments, and view different
analysis results.

The caB2B server performs backend activities associated with user interactions. The server
caches static data like classes and attributes from domain models and their associations as well
as query execution results. Following diagram shows overall architecture of caB2B. We will see
the components shown in this diagram in later sections

Figure 1 caB2B Client-Server Architecture

E Server
Client] : SC: static cache
E Query Engine COL EXP:
S AR Generator sc | Exp Experiment data
Results lE) Metadata asyne Job MDR | TMP rr\gDCIZ{S:itr\élftadata
Viewers P Search Manager TI\E)IP' Y
- Engine Local databasze !
Experiment P Path Resolyer Temporary
)i g Data Cache cache
Metadata R Metadata cagrid 4 _
Search UL Loader Service | cagrid
Locator

2.2 Why caB2B uses client-Server based architecture?

The rationale for selecting a client-server based architecture is as follows:

1. A centralized caB2B server avoids the need to install a database per client.

2. Server stores common data required by all the caB2B clients which includes

a.

The parsed UML model classes and attributes and their associations obtained by
downloading models registered in the caDSR repository.

b. All possible paths between pairs of UML classes.

Page 7

caBench-To-Bedside Design Document

Disk space consumption is reduced on the client as common data is stored on the server.

Common data which needs to be refreshed periodically from some source external to
caB2B like downloading UML models are fetched by the caB2B server. Thus every client
does not need to acquire such updates as this activity is centralized with clients
connecting to this sever to receive the latest updates.

The caB2B server caches static data like all the classes from the domain models and
associated paths resulting in significant performance gains.

Asynchronous tasks such as executing analytical services, executing complex queries
and workflow management may be performed by the caB2B sever allowing the caB2B
client to be interactive. The user can perform other tasks until the caB2B server
completes its task and returns results back to the client.

User created experiments and query results are stored on the server. Hence these
results and experiments may be shared across multiple users connecting to the same
caB2B server.

2.3 Client-Server Communication

Communication between the caB2B client and caB2B server occurs through RMI-IIOP i.e.
"Remote Method Invocation over the Internet Inter-ORB Protocol". EJB is a part of Java RMI-IIOP
i.e. EJB is a remote object and is callable from a different JVM. For more details on this use the
references section. The diagram below shows the architecture of the caB2B application
portraying how the client interacts with the server using EJBs:

2.3.1

The reasons for using EJBs

EJB allows the client to have a remote Java object easily (i.e. the stubs are generated
automatically by the container).

It is very easy to call EJB from a standalone client. With an EJB lookup and creation logic
are encapsulated in one place. The client code is not aware that there is an EJB on some
remote machine which is catering its request. The client just calls methods as if they are
being called locally.

An EJB's life cycle are managed by a J2EE-compliant server.

EJB provides failover and load balancing i.e. one instance of a stateless EJB can cater to
more than one client simultaneously.

An EJB can "publish" a Java API centrally as a Remotelnterface. Such an API is referred
to as a Businessinterface in caB2B. The class providing that APl may be looked up and
methods may be called from any remote web application/standalone application.

All EJBs are stateless session beans. For example the query engine related EJB
executes the user specified query and returns the result back.

EJB is an open standard designed for vendor independence. The EJB specification is
developed and supported by all major open source and commercial vendors in the
enterprise Java community.

Dependency on EJB:

One important point to note here is that none of the business logic components have any
dependency on EJB. In fact, components like query interface, metadata repository, metadata
search and diagrammatic query view (DAG) are some of the components that are reused
across caTissue Suite and caB2B. Note that caTissue Suite is a web-based application
developed in Java Struts framework whereas caB2B is a desktop application developed in
Java Swing framework. In spite of these fundamental differences, reuse of most of the

Page 8

caBench-To-Bedside Design Document

components illustrate that the business logic components does not have any dependency on
the technology used to communicate between client and server (EJB in this case).

Note: We are currently using EJB 2.1 and will be migrating to EJB 3 in the next release of the
caB2B application.

2.3.2 A Sample scenario

During server startup each EJB’s Home Object (i.e. factory for creating EJB instances) is tied with
a name in the JNDI (see references) tree on the same server. When the client needs to call a
method on the server, it does the following:

1. It asks the EJB-locator locate the appropriate EJB instance (in the form of a
Businessinterface) that provides the required functionality. Each locator instance is
aware of which JNDI tree to refer.

2. The Locator looks up the ‘Home Object’ of the corresponding EJB in the JNDI tree and
uses it to get the EJB instance.

3. The client calls the required method on this business interface.

The following sequence diagram describes a sample flow of EJB lookup remotely. The example

is that of a finding all paths between two UML classes, also referred to as entities in the
application:

sd sequence

AddLimitPanel Locator JNDI tree

locate(PathFinderHomelnterface)

>

Thisisa remote call

lookup(PathFinderHomelnterface)

createBean(PathFinderHomelnterface)

PathFinderBusinessinterface
e S T]

Figure 2 Example of client server communication via an EJB lookup

=
1
[}
I

1. PathFinderBusinessinterface has method getAllPossiblePaths(). It accepts source,
destination and returns a list of Paths.

An EJB, PathFinderBean implements this interface.

lts home interface is PathFinderHomelnterface. EJB’s remote interface i.e.
PathFinderRemotelnteface will extend PathFinderBusinessinterface.

4. The Ul will call Locator to find the appropriate class for finding paths. Locator will lookup the
PathFinderHomelnterface from the JNDI tree and will call create () on it which returns
PathFinderBusinessinterface. Locator will return that to the Ul.

5. The Ul will call getAllPossiblePaths() on PathFinderBusinessinterface to get the list of Paths.

Page 9

caBench-To-Bedside Design Document

2.3.3 Classes involved in client-server communication

cd Logical Model

Locator

EJBHome
«interface»

-locator

PathFinderHomelnterface

+ getlnstance() : Locator
locate(String, Class) : Businessinterface + create() : PathFinderRenotelnterface
+ clone() : Object

o

SessionBean Serializable

AbstractStatelessSessionBean «interface»
Businessinterface

ejbCreate() : void

ejbActivate() : void

ejbPassivate() : void

ejbRemove() : void
setSessionContext(SessionContext) : void

A\

+ o+ + + +

«interface»
PathFinderBusinessinterface

getAllPossiblePaths(Entityinterface, Entityinterface) : List<IPath>
getinterModelAssociations(Long) : List<linterModelAssociation>
getCuratedPaths(Entityinterface, Entityinterface) : Set<ICuratedPath>
autoConnect(Set<Entitylnterface>) : Set<ICuratedPath>

N V\

4 EJBObject
PathFinderBean «interface»
PathFinderRemotelnterface

+ o+ 4+ o+

Figure 3 Class diagram showing usage of EJB with PathFinderBean example

Locator is responsible for all EJB lookups. This is a singleton class. The caB2B server to be
contacted in configured in "cab2b.properties". Locator looks up the Home Object of
corresponding EJB in JNDI tree and uses it to get EJB instance. It has the following method
to lookup Businessinterface locate(String ejpName, Class homeClassForEJB)

AbstractStatelessSessionBean is an abstract class which represents a Stateless Session
Enterprise Java Bean. Each Stateless Session Bean must extend this class if it not extending
something else. This avoids the need of each bean to implement methods from the
javax.ejb.SessionBean class.

A home interface of an EJB defines the methods that allow a remote client to create, find, and
remove EJB objects. It extends javax.ejb.EJBHome

An EJB's remote interface provides the remote client view of an EJB object. It defines the
business methods callable by a remote client. The remote interface must extend the
javax.ejb.EJBObject interface and corresponding business interface.

Businessinterface is a marker interface. All business interfaces must extend this interface.
Each EJB has a business interface which defines the enterprise Bean specific business
methods. This is to put a compile time check on the methods exposed by EJB and methods
implemented by EJB

Page 10

caBench-To-Bedside Design Document

3 Metadata Repository

3.1

3.2

Overview

One of the basic requirements of caB2B is to be able to download a UML model of any
application from the caDSR and provide capabilities to build a query to fetch data from that
data source. In order to understand the design of caB2B it is necessary to first understand
the design and concept of the metadata repository (MDR).

MDR stores the metadata for an UML model including its semantic annotations like all
CDEs including permissible values by decomposing the annotated UML model obtained
from caDSR.

It also contains all-to-all paths between every two classes. The caB2B server pre-
calculates the paths between all pairs of classes in the UML model and stores them in the
MDR. Classes from different applications are connected based on their attribute’s CDE
match. This involves matching the concept codes of the classes and their attributes in
order. Finally, given the amount of information it stores, it is also possible to get all the
paths between two classes across two different UML models based on semantic
interoperability.

The design of MDR is the basic foundation for caB2B backend. It enables the caB2B query
engine to provide the following functionalities:
e Metadata search

e Auto generation of user interface for entering predicates
e Automatic path resolution between two query predicates
e (Category support

e Inter model queries based on semantic joins

caB2B uses Dynamic Extensions framework to store the UML model along with its
semantic annotations.

What is Dynamic Extensions?

Dynamic Extensions is a framework that allows creating business objects dynamically in
the form of entities and attributes. Following are the Dynamic Extensions (DE) terms
regularly referred in this document:

e Entity is a UML class.

e Attribute is a UML attribute.

e Association is relationship between any two entities.

The metadata definition of entity and attribute includes:
e Model Properties (i.e. Data type, Precision etc.)
e Semantic properties (i.e. concept codes)
e Value domain specification (CDE public id, permissible values etc.)

For the detailed design of MDR, please refer to Section Overview and UML metadata of
the Dynamic Extensions design document.

Note: Since Dynamic Extensions design document is not formally released, those two

sections are appended to the Appendix of this document. Once the DE design document is
release, the appendix will be deleted.

Page 11

caBench-To-Bedside Design Document

3.3

Storing UML model

This activity involves following
e Parsing the domain model downloaded from caDSR using caGrid APIs

e Storing the metadata in DE along with inheritance relations.

e Finding out semantic relations of entities from current model to entities already
present in system (coming from different model)

The class diagram below shows all the classes involved in parsing domain models,
storing them in MDR, and finding and storing all possible non-redundant paths.

cd Path Building ~

PropertyLoader DomainModelProcessor

+ getPropertiesFromFile(String) : Properties + DomainModelProcessor(DomainModelParser, String)
+ getModelPath(String) : String + getEntitylds() : List<Long>
+ getServiceUrls(String) : String(] + getAdjacencyMatrix() : boolean(]
+ getAllApplications() : String[] + getReplicationNodes() : Map<Integer, Set<Integer>>
+ getdndiUrl() : String + getEntityGroup() : EntityGrouplInterface
A =4 i
i «call» L= '
! _--"«call» :
1 =7 :
PathBuilder 1
1
+ buildAndLoadAllIModels(Connection) : void i «use»
+ loadSingleModel(Connection, String, String) : void !
+ getNextPathld(Connection) : long 1
1
: i
! «instantiate» !
«use» TSao |
V AN V
InterModelConnection DomainModelParser
+ getlLeftAttributeld() : Long + DomainModelParser(String)
+ getLeftEntityld() : Long + getDomainModel() : DomainModel
+ getRightAttributeld() : Long + getUmlAssociations() : UMLAssociation(]
+ getRightEntityld() : Long + getUmlClasses() : UMLClasg[]
+ getParentVsChildrenMap() : Map<String,List<String>>|

Figure 4 Classes involved in storing UML model to MDR

PathBuilder is a controller that calls different utility classes to populate MDR by
decomposing models defined in cab2b.properties file. It loads all possible non-redundant
paths for a given model to database.

DomainModelProcessor stores the decomposed UML model to MDR. It first transforms
converts model into DE’s objects and processes inheritance relationship in the model.
Then DomainModelProcessor stores these objects to MDR. It also generates an
adjacency matrix and related information required for path calculation. An instance of this
class refers to one domain model

DomainModelParser converts a domain model XML file located at a given path to
caGrid metadata objects using the caGrid metadata utility
(gov.nih.nci.cagrid.common.Utils).

PropertyLoader handles fetching properties from "cab2b.properties" file. It provides
methods

o To get all the models loaded in caB2B

Page 12

caBench-To-Bedside Design Document

o To get the file system path for the domain model XML of a given application

¢ InterModelConnection represents one link present between two entities from different
models. This link is a pair of semantically equivalent (i.e. reused CDEs) attributes of
classes from different models.

3.4 Path Generation Module

3.4.1 Steps and Classes Involved

This module calculates all possible ways to connect any two entities in the same model. It
consumes the adjacency matrix generated by DomainModelProcessor. It converts that to a
Graph object which is an adjacency list representation of a (directed) graph. Each vertex of
the graph is a Node. This module outputs set of edu.wustl.cab2b.server.path.pathgen.Path
which is an immutable representation of a path as a collection of the following:

e Source/From edu.wustl.cab2b.server.path.pathgen.Node

e Destination/To edu.wustl.cab2b.server.path.pathgen.Node
e Ajava.util.List of intermediate nodes needed to traverse from fromNode t0 toNode.

At any point in time, GraphPathFinderCache contains all the paths between all pairs of
nodes that have been computed till then. When the algorithm terminates, this cache will thus
contain all the resultant paths. This cache helps avoid recalculation of paths between a pair
of nodes, and thus improves efficiency. Figure below shows all the classes involved in this
module.

PathReplicationUTtil replicates paths of parent entity to its child. For example suppose P1,
C1, P2, C2 are classes. C1 is child of P1 and C2 is child of P2. There is a bi-directional
association present between P1 and P2. There is not association between C1 and C2. Then
system generates following paths along with normal path between P1 and P2

1. Path between P1 and C2

2. Path between C1 and P2
3. Path between C1 and C2

Page 13

caBench-To-Bedside

Design Document

cd Path Building

GraphPathFinder

-inputGra&h

Graph

+ getAllPaths(boolean[][], Map<Integer, Set<Integer>>, Connection) : Set<Path>

PathReplicationUtil

+ replicatePaths(Set<Path>, Map<Integer, Set<Integer>>) : Set<Path>

-cache

AN
«instantiate»
N

~
AN
AN
~

N \\

Graph()

Graph(boolean[][])

addAdjacentNode (Node, Node) : void
addNode(Node) : void
getAdjacentNodes(Node) : Set<Node>
containsNode(Node) : boolean
numberOfNodes() : int

allNodes() : Set<Node>
isEdgePresent(Node, Node) : boolean

+ 4+ + + + + + 4+

GraphPathFinderCache

~ addEntry(SourceDestinationPair, Set<Node>, Set<Path>) : void

~ getAllPaths() : Set<Path>
~ cleanup() : void
~ checkAlive() : void

~ getPathsOnlgnoringNodes(SourceDestinationPair, Set<Node>) : Set<Path>

MemoryCache DatabaseCache

Path

containsNode(Node) : boolean
isCyclePresent() : boolean
isSelfEdge() : boolean
getintermediateNodes() : List<Node>
fromNode() : Node

toNode() : Node

+ o+ o+ o+ o+ o+

_gjp

SourceDestinationPair

+ SourceDestinationPair(Node, Node)
+ getDestNode() : Node
+ getSrcNode() : Node

-srcNode -destNode

Node

+ getld() :int
+ getldAsString() : String

Figure 5 Class diagram of Path Generation Module

3.4.2 Algorithm for Path Generation

This algorithm computes all possible paths present in a directed graph. No path returned
should contain a cycle. Suppose the graph is (V, E) where V is the set of vertices and E
is the set of edges. A source-destination-pair (SDP) is represented as i-> 7.

GraphPathFinderCache.getPathsOnIgnoringNodes (SDP,

Set) method

returns the set of paths for given SDP and ignored nodes. Denote the SDP by i-> 3, and

ignoredNodes by N.

Let n (p) denote the nodes in a path p. Then, given that N1 <

P(i->j, N1fromPp(i->7, N2) using the following formula

P(j-7>jr Nl) = {p 1S = P(i7>jl

N2),
Thus this method is expected to do the following:

n(p)

N N1 =

N2, we can compute

{r 1.

1. If there is an entry in the cache P (i—>7, N), return it, else continue.
2. If there exists an entry in the cache P (i->7j, M) suchthatM & Nthen
compute P (i->7, N) using above formula and return it, else continue

3. Return null

Note that if an empty set of paths is returned, it means that it has been computed already
that there are no paths present, i.e. P(i->j, N) = {}. The algorithm is as follows:

Page 14

caBench-To-Bedside Design Document

Foreachpairofnodes {i, j : i € v, j € v, 1 # 3} inthe graph, call
getPaths (i—>7, {}).Self-edges (a self-edge is a path of the form i->1i) are then
added to the resulting set of paths. getPaths () is the method where the core of the
algorithm resides. Suppose P (i->7j, N) is the set of paths about to be returned from
getPaths (). Following is what happens on a call getPaths (i->7, N), where Nis
the ignoredNodesSet :

1. LetX = GraphPathFinderCache.getPathsOnIgnoringNodes (SDP,
Set) with (i->j, N) as parameters;

lfX !'= null,thenpP(i->j, N) = X;returnP(i->j, N).
Else continue.

2. Ifi->j € Ethenaddapathi->jtoP(i->7j, N).

3. Letk = {k : k €V, k #1i, k # j, kK € N, i->k € E).
Foreach x € K, do the following:

1. Call getPaths (k->j, N U {i}). Suppose the returned set of
paths is R.

2. ForeachpathRx (0 < x < |R|) in R,addthe path i->Rx to
P(i->j, N).

4. Addp(i->j, N) tothe cache.

Return p (i->7, N)

3.5 Category

3.5.1 What is a Category

Category is a collection of attributes from one or more UML classes. These UML classes
may be from same or different applications. The UML classes in a category should be
directly or indirectly connected using UML associations.
As an illustration of the usage of category, consider the following use case: Get all genes
with annotation which are associated with a given "Gene" through pubMed literature
abstract i.e. get list of genes having literature relationship correlation value > 0.5 and
have relationship with given gene. The UML diagram for the classes in the query is

od Logical Model

fe:Chromosome

fe:Gene

+chromosome +geneCallection

id: Long

symbal: String
name: String

=zumman: String
pubmedCount: Long

name: String 1 1= #
id: Long v

chromozomehdap: String
+geneColledion
1.7 +geneCollection 1.7
+literatureRelationshipCaollection {D_."
fe:literatureRelationship +organizm yf;1

toene: Long

comelation: Double
id: Long - name: String

nchiTa=onamyll: Long

id: Long

fe::Organism

Figure 6 diagram for classes in category

Page 15

caBench-To-Bedside Design Document

3.5.2

To build the example query, user would
1. Search the four classes individually
2. Add limits on each of them
3. Connect all the classes in the DAG view

Shortcomings of above process:
e UML Class is a collection of attributes that makes sense to developers and
bioinformaticians.
e The steps described above are cumbersome and time-consuming
e Each user who wishes to perform this query has to follow this process every time

In certain cases it may be found/felt that each user will define limits on specific attributes
of certain logically related classes and connect them by similar paths. In such cases,
those attributes can be grouped together to build predefined units with unambiguous
paths to save users’ time. These predefined units are categories.

Benefits

e Ability to apply limits on attributes of several UML classes in one go

e Paths among classes in a category will be predefined in metadata. Thus, the
user need not find paths required to traverse logically related classes every time.

e End-user sees attributes in a single logical unit even though they belong to
different classes due to modeling constraints

e Users with limited knowledge of UML domain models can query on categories.

e Advanced users can also use categories as building blocks for their complex
queries

Creating a Category

Category is defined as a well-formed XML file called category XML. CategoryXmlParser
parses this file and generates an InputCategory object. PersistCategory converts
InputCategory to Category hibernate-object which will be saved by
CategoryOperations. This flow in explained in sequence diagram below

=d MetadataStorage? /

PersistCateqory CategoryOperstions

Categoryiml Parser

e

getlnputCategony

InputCategons=

Categony= persistCategontlnputC ategond

L zaveCategonmCategony’

Figure 7 Sequence diagram saving a category

Page 16

caBench-To-Bedside

Design Document

Category XML

This is a well-formed XML file, which defines a category. All categories are first defined
as a Category XML and then they are imported into the caB2B MDR. The structure of this

file is as follows:

<Category-
<CategorialClass name="" Id0fPathFromParentToThiz="-1"> <!—— root ——>

chttribute name = />

<httribute name = />

<CategorialClass name="" IdofPachFromParentToThis = "23451">
<Attribute name = />
<cAttribute name = S>>
<CategorialcClass name="" IdOofPathFromParentToThis = f53451™>

</ CategorialClass:>
</ CategorialClass:

</ CategorialClass>

<!=-— here are Sublategories ——>

“<Categqory>
</ Categorys
</Categorvy>

Figure 8 Category XML structure

Below is the example of the Clategory XML file for the category “Genomic identifiers”

“Category name="Genomic Identifiers™:>
<CategorialClass nawe="edu.wmustl.geneconnect . dowain. Gene” IdOfPathFrowmParentToThis="-1"> <!'—— root ——>

<lttribute names = "ensewblGenseId" displavilzme = "ensenblgensID"/ >

<Attribute name = "unigeneClusterId” displavyllzme = "uniGeneClusterId™/ >

<Attribute name = "entrezGeneld™ displaylisme = "entrezGensId"/>

<CategorialClass name="edu.wmistl.geneconnect, domain. MessengerBNA" IdOfPachFrowmParentToThis = "716">
<httribute name = "engemblTranscriptId”™ displaylame = "wmRNAEnsewblTranscriptId™/ =
<httribute name = "genbankbccession™ displayilame = "mENAigenBanklccessionMuwbher ™/ =
<Attribute name = "refseqld" displaylame = "mRENArefIecqld™ =
<CategorialClass name="edu.wustl.geneconnect.domain,.Protein®™ IdOfPathFromParentToThis = "olg"s

<!=-= Path -»> Gene-mEMA-protein ——%

<Attribute name

<Attribute name =

<Attribute name
<httribute name
</ CategorialClasss>
</CategorialcClasss
</ CategorialClasss>
</ Categorys

"enzenh lPeptideId” displayMame = "ensenrblPeptideId"/ >

"refseqgld” displaylame = "proteinBefSeqld" /=

"uniprotkbPrimaryhccession™ displaylame = "proteinlUniProtEBPrimaryiccession =
"genbankiccession™ displaylame = "proteinGenBankiccession™/ />

Figure 9 Example of Category XML file

3.5.3 Class Diagram

Classes involved in category creation are shown in figure shown below.

Page 17

caBench-To-Bedside Design Document

cd CategoryOperations /
DefaultBizLogic) i
i InputCategorial Attribute
CategoryOperations
- + getDisplayName() : String
+ saveCategory(Catggory) - el . + setDisplayName(String) : void
+ getCategoryByEntityld(Long, Connection) : Category + getDynamicExtAttribute() : AttributeInterface
+ getCategoryByCategoryld(Long, Connect'mn) : Category + setDynamicExtAttribute (AttributeInterface) : void
+ getAllSourceClasses(Category) : Set<EntityInterface>
+ getAllRootCategories() : List<Entitylnterface> +attributeList *
+ getAllCategories(Connection) : List<Category> 1
+ getAllSourceAttributes(Category) : Set<Attributelnterface>
/.'\ InputCategorialClass
) : . + getAttributeList() : List<InputCategorial Attribute>
«instantiate» + setAttributeList(List<InputCategorialAttribute>) : void
: + getChildren() : List<InputCategorialClass>
PersistCategory + setChildren(List<InputCategorialClass>) : void
- + getPathFromParent() : long
+ persistCategory(InputCategory, Category) : Category + setPathFromParent(long) : void
+ getCategoryEntity() : Entitylnterface
+ persistCategories(String[]) : void +rootCategorialClass 1
+ main(String[]) : void 1
T
1
i InputCategory
«instantiate» 3)
vV + getRootCategorialClass() : InputCategorialClass
+ setRootCategorialClass(InputCategorialClass) : void
CategoryXmlParser | + getSubCategories() : List<InputCategory>
+ getlnputCategory(String) : InputCategory «instantiate» | + setSubCategoriles(LiskInputCategory>) :void
+ getName() : String
+ setName(String) : void
+ getDescription() : String
+ setDescription(String) : void

Figure 10 Classes involved in category creation
¢ InputCategory is an object representation of the "Category" tag of category XML.

¢ InputCategorialClass is an object representation of the “CategorialClass" tag of
category XML.

¢ InputCategorial Attribute is an object representation of the "Attribute" tag of category
XML.

e CategoryXmlParser provides methods to parse a category XML (see references) file
and converts it into Java object form. These Java objects will be used in actual category
creation and saving.

e PersistCategory provides methods to save a category in the database. It uses
CategoryXmlParser to convert a category XML to corresponding objects (InputCategory)
and then builds actual Category objects and saves them to the database using Hibernate.

e CategoryOperations provides functions for database operations needed for a category
such as save and retrieve.

3.6 Metadata Cache

Contents of MDR are needed frequently by various cab2b-components. To improve
efficiency, by avoiding database calls, metadata cache module is introduced. Classes
involved in this module are shown in diagram below.

IEntityCache is an interface with methods needed for metadata search. Those will
be explained in Metadata Search section later. AbstractEntityCache is an abstract class
having all the methods exposed by this module. All components access MRD information

Page 18

caBench-To-Bedside Design Document

through this class only. It provides variety of methods to get metadata along with providing
searching methods from IEntityCache. getCab2bEntityGroups () is the only abstract
method in AbstractEntityCache. This method is used to populate the cache. So it is up to
implementer’s responsibility to decide how it will get entity groups. There are two
implementing classes EntityCache and ClientSideCache.

EntityCache calls dynamic extension API directly to get entity groups. EntityCache
is a singleton class residing in server side. It is instantiated and populated on first server
call. It is then used by all of the components running at server side. ClientSideCache calls
an EJB UtilityBean to get entity groups as it won’t have direct access to DE APIs. It is also
a singleton class which is instantiated and populated before launching client. It is then used
by all of the components running at client side.

cd ErtityCache -

winterfaces
|ErfifyCache

efeshCacke () ; void

getEntity OnEntityParameters(Callection =Enbityittedzoe =) : Matched Glass

getEntity O Alddute PaanetersColleckion <ARdhutelrterzee =) @ Watohed Glass
getEntityOnPemissifle Yalue Paameters(Collection sPemizsible Valueirterdace =) Matched Class
getCategores(Collection =Entitvitterdace =) : MatehedGlass

getCategonie sdiidbude ool leckion =Atd hutedvtedaoe=) Matohed Clazs

Fdd Entity To Gacke (Entityirtedace) void

- HentityCache
1

+ o+ o+ o+ o+

Sedalizahle
AbsfracfEnfifyCache

getCachel) : AbstractEntityCache

AbstractEntityC achel)

getEntityByldiLong) : Entitylnterdface

isEntityPresentLong) : boolean

getfttributeByldiLong) : Attributelntedface

getfssociationByldiLong) : Associationlntaface
getfssociationBylUniqueStringldentifien)String)) ; Associationinterface
addEntityToCachelEntityInterface) : woid

getEntityGroups) : Collection<EntityGrouplnterface:
getlah2hEntityGmouos(] - Collection =ErtityGmoupittedaoe =

o+ 4+ + o+ 4+ A+

ErtityCache

getCabZbEntityGroupal : Collection<EntityGrouplnteface=

ClientSideCache

getCabZbEntityGroupal: Collection<Entityzrouplnteface=

Figure 11 Classes in Metadata cache module

Page 19

caBench-To-Bedside Design Document

4 Metadata Search

4.1 Overview

As the end users may not be familiar with object models, there should be a way for them to first
search for the entity on which they want to query. For example, an end user will not know which
entity has the attribute for clinical diagnosis in the caTissue object model. The metadata allows
users to first search for entities based on metadata such as names, attribute names, permissible
values, or definitions using free text search or concept codes. This module has backend search
implementation and a user interface to specify search conditions, display search results.

4.2 Backend Implementation

Metadata search back end part exposes one method on MetadataSearch class
search(int[] searchTarget, String[] searchString, int basedOn) Parameter details are:

e basedOn: the basis of search, whether a text based or concept code based search is
asked

e searchString[]: Array of Strings created by splitting string entered by user based on space
characters

e searchTraget[]: Where to search is specified by this. Typical values are class, attribute,
permissible values, class-description and attribute-description

The dataset to be searched is decided by the IEntityCache object passed to construct
MetadataSearch object. IEntityCache provides searching methods like

e getEntityOnEntityParameters(entityCollection)

e getEntityOnAttributeParameters(attributeCollection)

e getEntityOnPermissibleValueParameters(PVCollection)

e getCategories(Collection<Entitylnterface> entityCollection)
e getCategoriesAttributes(attributeCollection)

Each of above method returns a MatchedClass object. MatchedClass is a wrapper around set of
entities. The search () method searches each searchTarget for all strings in searchString array
by calling one of the above methods of IEntityCache for each searchString. Then it merges the
results of all individual searches using method createResultClass () and returns one
MatchedClass object.

CompareUtil is responsible for deciding whether a particular entity, attribute, permissible value or
semantic property is matching user criterion. It has compare() methods which take pair of
entities, attributes, permissible values or semantic properties and returns a boolean. If user
entered string is contained in string to be search, then it is added to result. Below diagram shows
all of the classes along with their behaviors and relationships with each others.

Page 20

caBench-To-Bedside

Design Document

cd Metadata Search /
winterfacens
|ErfifyCache
+ efeshCache(] ; void
+ getEntityOnEntityPammeters(Colection=Entityirterdace =) : Matched Clazs
+ getEntityOn Attd bute FamsnetersColledion =Ald butertedzoe ?) : Matohed Class
+ getEntityOnPemizsible ValvePamneters(Collection) : Matched Class
+ gettategores(Collection <Ertityirteraee =) Matched Glass
+ getlategofesdithdbutes(Colection <Al hutedrbedzoe =) | Matched Clacs
+ FddEntity ToCache Entityintendzoe) | void
-entit,,rl::acﬁ
MetadataSearch |
+ MetadataSearch) E
+ MetadataSearchilEntityCache) !
+ =searchlintl], Stringf], int): MatchedClas L
+ zearchSplitint]], Stringl, int): MatchedClazs i
Seralizatle | |
MatchedClass .
+ getEntityCollection) : 5et<EntityInterface= E
+ =zetEntityCollection(S et<Entitylnteface=) : void i
+ getdbtributeCollection?) : Set<Attributeinteface: .
+ zethatchedAttributeCollection(S et<Attibutelnteface®) : woid | | #entityCache
+ addEntitwEntitylnterface) : void ;
+ addAtributeittributelnteface) : woid : 1 r
Seralizable
AhsfraciEnfifyCacke
+ getCache): AbstractEntityCache
+ refreshCachel: vaid
+ getEntityOnEntityF arametersCollection <Entitylntefaces) : MatchedClass
+ getEntityOnAttributeP arametersgColledion<Attributelnterface=) : MatchedClass
+ getEntityOnPermissible’alueP arameteraCollection) ; MatchedClass
+ getEntityByldiLong) : Entitylntedace
+ isEntityPresentLong): boolean
+ getdbtributeByld(Lang) : Atributelnteface
+ getfssociationByldiLong) : Associationinterface
+ getfssociationByUniqueStringldentifien’String) : Associationlnteface
+ addEntityToCachelEntitylnterface) : waid
+ getEntityGroups’) : Collection<EntityGouplnteface:
ErtityCache
+ getlnstance() : EntitvCache
+ getCategories/Collection<Entitylnterface®) : MatchedClass
+ getCategoriesfttributes’Collecdtion<Atibutelntedaces=) : MatchedClass
Campare Ltil
+ compare(Entitylintedace, Entityinteface) : boolean
+ compare(SemanticPropertylntedface, SemanticFroperyinteface) : boolean
+ comparefAttibutelnterface, Aftributelnterface): boolean
+ compare(Permissible’aluelntedface, Permissiblealuelntedace): boolean

Figure 12 Classes- Metadata Search backend

Page 21

caBench-To-Bedside Design Document

4.3 User Interface

User interface of this module mainly consist of SearchPanel. AdvancedSerachPanel and
SearchResultPanel are embedded in SearchPanel for common functionalities and code reuse.
AdvancedSearchPanel is panel where user specifies search criterion, SearchResultPanel
displays search results using pagination component (for details refer to chapter Pagination
Component). The diagram below shows these classes along with their local classes.

AdvancedSearchPanel: It is a class which contains commonalities between the collapsible
portions of the advanced/category search panels for the 'Choose Category' as well as
'AddLimit' section from the main search dialog. TaskPaneMouseLister is its local class. The
collapsible portion provides options for searching category, attribute, permissible values with
provision of concept code or text search.

SearchResultPanel: This class that contains commonalities required for displaying results
from the 'AddLimit' and 'Choose Category' section from the main search dialog.
MyCellRenderer, AddLimitButtonListner, CDETableModel, EditLimitButtonListner,
AttributeDetailsLinkListener are its local class.

SearchPanel: It is the main class that contains Ul commonalities between the
advanced/category search panels for the '‘Choose Category' as well as 'AddLimit' section
from the main search dialog. SearchActionListener is its local class.

Page 22

caBench-To-Bedside Design Document

=d Matadzta Search Ul /

STextdmes
Fahle CellRendemnr
SearchResultPanel :MyCdlRenderer
+ hiyCellRenderen)
+ getTableCellRenderarComponentdTable, Object, boolean, boolean, int, int) : Companent
Cah 2hPans! Abztaet Tzhlefode!
Acticnlistener SearchResultFanel ::CDETable Model
SearchResultPansl
+ getRowCountl: int
+ SearchResultPanellContentPanel, Set<Entityintarface=) + getColumnCountl : int
+ setResultPanel(CabZbPanel) : void + getWalueAtint, int): Object
+ getEntityForSelectedLlink) ;: Entitylntaface + getColumnMNamelint) : String
+ removeResultFanel]) : void
+ initializeAddLimitButtant) P anel], Entitvlnterface) : waid o gs Ad 3oter
+ createEditLimitF anelslExpression) : JXPanel]] AdvancedSearchPanel ::
+ adionPedormediActionEvent) : void TaskPaneMouselistener
+ initializePanelsForAddConstraintsJxPanel]) : JXPanel] ” 3
+ performaAddLimitaction(P anel], Entityinterface) : void + muouseClideedibdouseEvent) : woid
+ peformEditLimit@ctionidXFanel]], I[Expression) : waid
+ displaySearchSummangintl : JXTitledPanel CahzZpFane!
+ getPageSize: int femlisterer
+ getdddLimitButtond) : CabZbButton AdvancedSearchPanel
+ getConstraintButtonPanell) : CabZ2bFanel
+advSearchPanel |+ AdvancedZearchPanel()
+sthesuItP‘anel4\ + getTaskFanel) : LT askFane
+ getSearchTargetStatus): int]
AnstactAction + getSearchOnStatus]: int
SearchPanel ;: SearchactionLlistener + itemStateChangediitemBEvent) : vaid
+ SearchAdtionListenenComponent) Acioniisterer
+ adienPerformedifctionEvent) : void SearchResult Panel ::AddLi mit Button Listner
Actioriistener + AddLimitButtonListnendXFPanel]], Entitylnteface)
SearchResultPanel + actionPedormediActionEvent) : vaid
AttribiteDetailsLinkListener Actioriizstener
+ AttributeDetailsLinkListe nerEntitylnteface) SearchResultPanel :EditLimitButton Listner
+ _adtionPerformediActionEvent) : void + EditLimitButtanListnen) XFanel], [Expression)
+ actionPedormediActionEvent) : woid

CahZ2hPanel
SearchPanel

SearchPanellContentPanel)
setlIFarChooseCateganySearchFanel) : vaid
zetlIFarAddLlimitSearchPanell : waoid
zetSearchtexdString) : woid

getSearchtexd : String

addResultsF anel{SearchResultPanel) : vaid
getSerachResultPanel]) : SearchResultFanel
setSerachResultPanel{SearchResultFanel) : vaoid
getSearchResultPanel(ContentPanel, Set<Entitylntedface=): SearchResultP anel
getidvancedSearchPanell) : AdvancedSearchPanel
setidvancedSearchPaneliAdvancedSearchPanel) : vaid
add TextField] : waid

e T T S

Figure 13 Classes- Metadata Search user interface

Page 23

caBench-To-Bedside Design Document

5 Query Object

5.1 Overview

The query-object (/Query) provides the interfaces used to represent a user-defined query. The
query consists of outputs (represented by IOutputTreeNode) and constraints (represented by
IConstraints). User defined conditions (e.g. Participant.sex = ‘female’) are represented by
ICondition. Conditions on different attributes of an entity are grouped together as a rule
(represented by [Rule). Various rules/expressions on an entity can be logically grouped into an
expression (represented by /Expression). An expression thus consists of operands (i.e. rules or
sub expressions; this is represented by IExpressionOperand) connected by logical operators
(AND, OR). Operands in an expression may also be parenthesized.

The various expressions thus formed need to be linked together. Two expressions are linked by
an association (represented by IAssociation). These linkages among the expressions constitute
the join graph (represented by lJoinGraph).

Interface Summary

ICondition A condition containing an attribute, relational operator and value(s).
E.g. participant.sex = 'Male' forms one ICondition
IRule A list of conditions on different attributes of an entity.
The conditions in a rule are implicitly linked by an AND condition.
ILogicalConnector Represents a logical connector (AND / OR). The nesting represents the

number of parentheses (depth of parentheses) around the logic portion
(AND or OR) of the connector.

IExpressionld An immutable wrapper around int used to uniquely identify an
expression within a query. It is auto generated when an expression is
added to a query (using IConstraints.addExpression).

IExpression A list of operands, and the logical connectors (AND, OR) together form
a logical expression. The connectors are identified by the position of
the operands on either side. An |IExpression belongs to a constraint
entity and constraints on another associated entity will be present as a
sub expression on the associated entity. Conversely, if an expression
has a sub expression, there must an association in the join graph from
the parent expression to the sub expression.
Note: "sub expression" refers to an operand that is the IExpressionld of
the child expression. The entity of the sub expression will generally be
different from the entity of this expression (the exception is when a
class is associated to itself, e.g. Specimen class in caTissue Core).
The expression for an Expressionld is found from IConstraints.

IExpressionOperand A marker interface for an operand. An operand is either a sub
expression (in which case, the corresponding expression id is added),
orarule.

I[JoinGraph A rooted, directed acyclic graph with expressions as vertices, and
associations as edges. The graph will always contain all the
expressions' ids (obtained from IConstraints) as vertices. The vertices
will be added to/removed from the Joingraph as and when expressions
are added to/removed from IConstraints. The methods in Joingraph can
only add/remove associations among the vertices.
If vi and v2 are two vertices, the direction will be v1->v2 if v2 is a sub
expression of v1. This graph determines the join conditions in the
query. E.g. for each edge (v1, v2) there will be a join between the
entities (IConstraintEntity) of the expressions denoted by v1 and v2;

Page 24

caBench-To-Bedside

Design Document

and the join condition is determined by the information in |Association.

IQueryEntity

An entity on which the user specifies limits (constraints)
e.g. Participant is an |IQueryEntity

IConstraints

Contains information about the constraints of a query. It contains a list
of IExpressions. This list is indexed by |IExpressionld. This is global
storage for all the expressions in a query. Calling the addExpression()
method here creates an |IExpression. It also contains a join graph for
specifying how the expressions are linked together.

[QutputEntity

An entity which is desired as the output of the query.

[QutputTreeNode

The output entities of a query form a tree with vertex as |0utputEntity
and edge as IAssociation. IQutputTreeNode represents one node of
this tree.

IQuery

The query object
consisting of outputs and constraints.

representing a complete user-defined query

5.2 Class diagram

cd queryobject /

IBaseQueryObject]
«interface»
1Query

getConstraints() : IConstraints
setConstraints(IConstraints) : void
getRootOutputClass() : IOutputTreeNode
setRootOutputClass(lOutput TreeNode) : void

?

+ o+ o+ o+

IBaseQueryObject|

«interface»

«interface»
IExpression

getOperand(int) : [ExpressionOperand
getConstraintEntity() : IConstraintEntity
setOperand(int, IExpressionOperand) : void
getLogicalConnector(int, int) : ILogicalConnector
setLogicalConnector(int, int, ILogicalConnector) : void
addParantheses(int, int) : void

addParantheses() : void

removeParantheses(int, int) : void

remove

getJoinGraph() : oinGraph
getRootExpressionkd() : [Expressionid

1dd Oy : Operand
addOperand(lLogicalConnector, [ExpressionOperand) : void
addOperand(int, ILogicalConnector, [ExpressionOperand) : void
addOperand(int, [ExpressionOperand, ILogicalConnector) : void

moveOy int) : ionOp nd
removeOperand([ExpressionOperand) : boolean
indexOfOperand|(IExpressionOperand) : int
getExpressionld() : [Expressionkd

FE R EEE R E

?

«interface»

IBaseQueryObject| numberOfOperands) : int
«interface» isVisible() : boolean
ishView() : boolean
IOutputTreeNode
upullres setVisible(boolean) : void
+ addChild(Association, IOutputEntity) : IOutputTreeNode i + void
+ getOutputEntity() : IOutputEntity ‘ BaseCuepOblect containsRule() : boolean
+ getChildren(): List<lOutputTreeNode> «interface»
+ i i 1L I
+ 0):
+ removeChil i o : boolean :
+ getParent() : IOutputTreeNode N oo IBaseQueryObject
0): : ‘
: :z;iit%’;‘;‘[’)’;zz + isConnected() : boolean CBIEED?
: + i i : boolean ILogicalConnector
+_getRoot) : Expressionld + getLogicalOperator() : LogicalOperator
interface» + setLogicalOperator(Logical Operator) : void
IQueryEntity
+ getD,
+ isCategory() : boolean
Zﬁ S IBaseQueryObject] «intertace»
Interiace intertaces «interface» IExpressionid
dynamicextensions ::Entitylnterface| -+ getls) : List<String> IExpressionOperand + getht(): int
L setUns(List<Stings) : void + isSubExpressionOperand() : boolean
+ 0 L
+) - void
«interface»
«interface» IRule
associalionszlAssociatioh + addCondition() : ICondition
—_— + addCondition(ICondition) : ICondition
+ getCondition(int) : ICondition
+ getC :
+ size():int
«interface «interface> IBaseQueryObject]
«interface»
+ getSourceAttribute() : Attibute + getTargetRoleName() : String ICondition
+ getTamgetAttribute() : Attribute + setTargetRoleName(String) : void -
+ removeSourceServiceUr(String) : boolean + getSourceRoleName() : String + getAttribute() : Attribute nterface
+ renoveTargetServiceUrl(String, String) : boolean +__setSourceRoleName(String) : void| + getRelational Operator() : RelationalOperator
+ setSourceAttribute(lAttribute) : void + getValue(): String
+ setTargetAttribute(lAttribute) : void + setAttribute(Attributeinterface) : void
+ addSourceServiceUr(String) : void + perator Operator) : void
+ addTargetSenviceUr(String, String) : void + setValue(String) : void
+ () : void
<nterface» +) : void

Figure 14 Interfaces that compose the query object

Page 25

caBench-To-Bedside

Design Document

6 Query Engine

Query engine interprets the query object and converts it to DCQL(s), executes DCQL(s) and gets

result back from data services

6.1 Overview

The category constraints made by the user using the caB2B client’s DAG view are stored in the
query-object i.e. ICab2bQuery (which extends IQuery to add information regarding output class’
service URLs). The query engine is an EJB that processes the ICab2bQuery to form the

corresponding DCQL, executes the DCQL, and returns the results back to the client.

6.2 Class diagram

cd ClassDiagram /

QueryExecutor

AbstractStatelessSessionBean
QueryEngineBusinesshterface’
QueryEngineBean

+ executeQuery(ICab2bQuery) : IQueryResult

+ executeQuery(ICab2bQuery) : IQueryResult

CategoryPreprocessor

+ processC;

Query) : Categ

«creates»

«user

CategoryPreprocessorResult

tegori

, Set<T

ConstraintsBuilder

- redundantExprs. Set<|Expressions
- catClassForExpr: Map<IExpression, CategorialClass>

+ G

b2bQ

- originallyRootCatClasses: List<CategorialClass>

g
+ buildConstraints() : ConstraintsBuilderResult

) - categoryForEntity: Map , Category>

+ e

Set<TreeN

QueryResultTransformerFactory

{leaf)

+ createT! : IQuery T

27>

«instantiate»

il

gories() :

getRedundantExprs() : Set<IExpression>

+ getO) : Set<TreeNod

+ getCatClassForExpr() : M CategorialCl
Cl

+

+ getO atClasses) : Lisi<CategorialClass>
yForEntity() : Map: Category>

i

ConstraintsBuilderResult

ToC

- classToDcqlCe

- HashM.

HashM: Degl Constraint> = new HashMap<IEx...

P . List<Deq|C — new HashtMap<Ei

«interface»

~ getResults(DCQLQuery, Entityhterface) : KQueryResult<R>
~ getCategoryResults(DCQLQuery, CategorialClass) : IQueryResult<C>

|
«instantiate»
v
IBaseQueryObject
«interface»
lQueryResult<R extends IRecord>

getRecords() : Map<String, List<R>>
addRecord(String, R) : void
addRecords(String, List<R>) : void
addUr(String) : List<R>
getOutputEntity() : Entitylnterface

I

+ ToC

+ getDeqlCy

Degl Constraint>

or

: DegiConstraint

!

DeglConstraint

«enumeration»

- constraint: Object

- constraintType: ConstraintType

DeglConstraint::ConstraintType

~onstraintType| + «enum» Any:

s

DeglConstraint()

W 4o

DeglConstraint(ConstraintType)
getConstraintType() : ConstraintType
setConstraintType(ConstraintType) : void
getConstraint() : Object
setConstraint(Object) : void

Attribute

Group:
LocalAssociation
ForeignAssociation:

+
+ «enum»
+ «enum»
+
+

«enum»
«enum»

Figure 15 Interfaces and classes that compose the query engine

Description of classes and their interactions:

°
client. It just forwards the call to QueryExecutor.
[]
attributes and rows to values.
[]
°

IExpressions on classes.

Page 26

QueryEngineBean is an EJB that receives the calls for query execution from the caB2B

IQueryResult is a map of the service URL to records obtained from that service. The
records are represented as a two-dimensional array with columns corresponding to

QueryExecutor uses the ConstraintsBuilder to form DCQL(s), hands over the DCQL(s)
to an appropriate transformer and returns the resulting /QueryResult. Multiple DCQLs are
fired when the output is category; CategoryPreprocessorResult is used in this process.

CategoryPreprocessor modifies an input /IConstraints by expanding the IExpressions on
categories to its constituent classes. Thus /Constraints is modified to only contain

caBench-To-Bedside Design Document

e CategoryPreprocessorResult represents the results of the CategoryPreprocessor. It
provides additional information about the relationship between the original category
entities in the query and the new expressions created for them.

e ConstraintsBuilder processes an [Query object and returns a corresponding
ConstraintsBuilderResult object (See Figure 13.0). It uses the
CategoryPreprocessorResult for this processing.

e DcqlConstraint is a wrapper around any of the following four types of objects that
compose part of the caGrid DCQLQuery. For details related to these and DCQLQuery
please see the caGrid Programmer’s Guide

o Attribute
o Association
o ForeignAssociation
o Group
e ConstraintType is used to distinguish among the above four types of constraints.

e ConstraintsBuilderResult provides the DCQLConstraint corresponding to each
IExpression in the query.

e QueryResultTransformerFactory provides the appropriate transformer.
® |QueryResultTransformer executes the DCQL using the caGrid FQP and transforms

the results to appropriate /Record. See Query Result Transformers (Chapter Record
Customization).

Page 27

caBench-To-Bedside

Design Document

6.3 Sequence diagram

sd SequenceDiagram

locate

Locate ejb
instance using

QueryExecutor

executeQuery(ICab2bQuery)

Locator

IQueryResult

new(query, categoryPrep

buildConstraints

=
i

build DCQL(S) using
ConstraintsBuilderResult and
CategoryPreprocessorResult

createT

QueryResultTransformerFactor

1QueryResultTransiomer

getResults(deal, outputEntity)

IQueryResultTransformer]
new
L -

Ifthe output isa category, then multiple DCQLs are created and multiple
callsto getC made. All the IQ are then
merged into a single IQueryResult

IQueryResult

e
oo

getCategoryResults(deql, categorialClass) ;
In a single call to IQueryExecutor, depending on whether the output
entity is a class or category, only one of getResults or getQueryResults
methods, respectively, is called
IQueryResult
T
X

transform the resultsto
appropriate |QueryResult with
appropriate IRecord's

Figure 16 Sequence diagram to show how a query is executed and

Page 28

results are returned

caBench-To-Bedside Design Document

6.4 Flowchart
cd Flowchart /

CategoryPreprocessor

Break down the
) constraints on categories
Constraints3uilde to constraints on actual
classes

Init currentExpr=rootExpr)

#(recursiveCall)

For all operands of
currentExpr do

#No (proceed after recursion terminates)
operands left?

S output a category?

#Yes

Create DCQL with output
class as the target, and
appropriate constraints
(obtained from
ConstraintsBuilderResult)

Perform a breadth-first traversal
of the categorial classes tree of
the category. At each level, form
DCQLs for the classes at that
level and obtain results for the
DCQLs using appropriate
transformers.

Isoperand a rule?

From the joinGraph, find
the association linking the
classes of the parent and
child expression.

Form Group or Attribute
corresponding to each
rule in the expression.

Execute DCQL and obtain
results using appropriate
query result transformer

| comesponding to the ids of the parent class.

|| DCaL for a dlass also has constraints
!'| Thisiswhy the traversal is breadthfirst

The DCQLS for the classes at same level
are executed in parallel. The

=7 ICategorialClassRecord's obtained for a
class are added as children records for
the parent ICategorialClassRecord. Thu
the tree of ICategorialClassRecord's is
also smultaneously formed.

isinterModelAssociation?

Return the results

Form DCQL "Association"”

Form DCQL
“ForeignAssociation”
(results in semantic join

across applications)

Set currExpr = the
sub-expr operand

Figure 17 Detailed steps within the QueryExecutor

6.5 Lazy initialization

Sometimes a record may be very big i.e. it may consume a lot memory. An example is a

biodatacube. Sending the complete record from the caB2B server to the client would be
unreasonable in such cases because:

¢ Client-side memory would be relatively lesser.

e The user may not wish to see the complete record; only some parts of it may be required
at a time.

Page 29

caBench-To-Bedside Design Document

e (Client performance would deteriorate due to the large amount of network traffic.

Thus, it is required, in some cases, to be able to initialize a record lazily.
Lazy initialization entails the following:

1. Store the complete record on the server side, and provide a handle to it. This is done by
edu.wustl.cab2b.server.queryengine.Lazylnitializer. A complete record is represented by
the interface edu.wustl.cab2b.common.queryengine.resul.lFullyInitializedRecord.

2. Maintain the handle as part of a partially initialized record. A partially initialized record is
represented by the interface
edu.wustl.cab2b.common.queryengine.result.IPartiallyInitializedRecord.

3. Obtain data for the uninitialized portions by providing a handle to the fully initialized
record, and parameters that identify the portions to fetch. The lazy parameters are
represented by edu.wustl.cab2b.common.queryengine.result.ILazyParams; the method
that does this lazy initialization is Lazylnitializer.getView().

Details of these interfaces and classes follow:

edu.wustl.cab2b.server.queryengine.Lazylnitializer
e int register(IFullyinitializedRecord fir) Registers a fully initialized record, and provides a
handle to it. Currently, the record is stored in an in-memory map.

e [PartiallyInitializedRecord getView(int handle, ILazyParams params) ldentifies the fully
initialized record corresponding to the handle, and requests it to provide the
IPartiallyinitializedRecord corresponding to given ILazyParams.

e [FullylnitializedRecord getFullyinitializedRecord(int handle) Returns the
IFullyInitializedRecord corresponding to the handle.

e void unregister(int handle Unregisters the record. Currently, the record is removed from
the in-memory map.

edu.wustl.cab2b.common.queryengine.result.IFullyInitializedRecord:
e [PartiallyInitializedRecord view(ILazyParams params, int handle)
Returns the partially initialized record that corresponds to the parameters. The handle is
passed on to the newly created IPartiallyInitializedRecord.

edu.wustl.cab2b.common.queryengine.result.IPartiallyInitializedRecord
e int handle() The handle to the fully initialized record.
e |LazyParams initializationParams() The parameters with which this record was created.

Example — BioAssayData

A BioAssayData record contains a biodatacube which is a three-dimensional array. The
dimensions of this array can be quite large, and thus the cube can require a huge amount of
memory. Lazy initialization of this record is done by lazily initializing the contents of this array
based on the indexes of the cells the user is viewing.

Following interfaces thus represent the partially and fully initialized records respectively:
e cabz2b.common.caarray.lPartiallyInitializedBioAssayDataRecord
e cabzb.common.caarray.lFullyinitializedBioAssayDataRecord

Refer to Record Customization for the class diagram showing the genealogy of these interfaces.
The lazy parameters for this scenario are represented by LazyParams from package
edu.wustl.cab2b.common.queryengine.result.I3DDataRecord

Page 30

caBench-To-Bedside

Design Document

sd lazy J

QueryExecutor

Call happensvia
bean (not shown)

BioAssayDataResultTransformer|

getResults(dcqlQuery, targetEntity);

intermediate query buil
steps not shown.

«interface»

ding

register(fullRecord)

Lazyinitializer

handle
T

this call is made for edch record obtained in the
results.

IPartiallylnitializedBioAssayDataRecord:= createCaArrayRecord ()

]

this partially initialized record is created
with handle obtained from previous call.
The biodatacube isinited to be empty.

IQueryResult<IF
l<

IQueryResu

UtilityBean

getView(int handle, ILazyParams params) __|
:

getVi

this call is made when user is viewing
a biodatacube in tabular format; as h
scrolls up/down or left/right in the
table, thiscall is made to fetch data
for the new cells.

Ilfgr}ia\ lyInitial izedB\%gsayDalaReco@f

unregiser(handle)

this partially inited record comesponds to the params provided: e.g. only those
cells of the cube are populated whose data is about to be shown to the user in
the table on the Ul

unregister(handle)

>
thiscall ismade when it is safe to
dispose of this record; for example
when user closes the query wizard

i i X

handle is disposed

the record correponding to the

getFullyhitialializedRecord(handle)

Figure 18 Sequence diagram -

Lazy Initialization

Page 31

caBench-To-Bedside Design Document

7 Custom Ul Components

7.1 Overview

The usual practice of Ul development is to use standard Ul controls with their default
properties and behavior. The problems with this approach are:
1. If the application requires a property (e.g. font for labels) to be standardized across
the application a change is needed at every place wherever that component
instantiated. This is quite cumbersome.

2. Sometimes standard component doesn’t provide required functionality or provides
limited functionality

These are avoided by creating several components (see table) by customizing and
extending the standard Swing and SwingX components. Customization includes modifying
some default property and/or behavior for the standard component to suit the
requirements.

The Usability Engineering group makes Ul standards available. For example, all button
labels should be of ‘Arial 10pt Normal'. This is achieved by defining ‘Cab2bButton’ that
extends ‘JButton’ and setting the font at the time of creation. So whenever a ‘Cab2bButton’
is created, it comes with customized font by default. Also, font can be changed very easily
by only modifying ‘Cab2bButton’ class and the change would be reflected across all
buttons in the application.

7.2 List of customized components

Original Customized Customization details Usability
Component Component Name related?
JButton Cab2bButton Default font and preferred size is set Yes
JLabel Cab2bLabel Default font, background color is set Yes
JCheckBox Cab2bCheckBox Default font, background color is set Yes
JComboBox Cab2bComboBox Default font, background color and | Yes
preferred size are set.
JRadioButton | Cab2bRadioButton | Default font, background color is set. | Yes
JTextField Cab2bTextField Default preferred size set. Yes
JFormattedTe | Cab2bFormatted- Customized to handle field validation | No
xtField TextField like, field accepts only positive
integer, floats and alphanumeric
strings.
JXHyperlink Cab2bHyperlink Customized by default to show the | Associating user
Cab2bHyperlinkUI hyperlink text underlined and each | object with
hyperlink associated with a user | hyperlink is
object. Default visited and un-visited | application
hyperlink color is set as per | specific.
recommendation.
JXDatePicker | Cab2bDatePicker Default preferred size is set. Yes
JXPanel Cab2bPanel Panel background color is by default | Yes
se t to white. It can be changed to any
other color by passing the appropriate
Color object.
JXTitledPanel | Cab2bTitledPanel This panel background color is by | Yes
default set to white.

Page 32

caBench-To-Bedside Design Document

TableModel LazyTableModel Added the ability to fetch table data | No
as and when needed to display huge
data in table form.

JXTable Cab2bTable By default, “select all” of table rows | No
Cab2bDefaultTable | are enabled. Shows long texts in a
Model text area with text wrapping.
StackedBox Customized to look as per the Visual | Yes

Design specification.

Table 1 customized components in the caB2B application

7.3 Lazy Table Model

This is component developed for visualization of huge spreadsheet data. It only fetches data that
is currently required. It additionally caches the data to improve performance. Classes involved are

e LazyDataSourcelnterface: This is used by LazyTableModellnterface to fetch the data only
when required. It provides the description of the data like number of rows, number of columns
etc. The method getData(int row,int column) has a responsibility to fetch the data from the
source (that may be a servlet, ejb or anything). Additionally it can cache the data.

e AbstractLazyDataSource: provides a sample implementation of the getData method. It
converts the location of the required data to the cacheable page unit. Then fetches the data
of the page from the data source, caches the page and extract required data from the page.

e BDAQDataSource: This is the implementation of the AbstractLazyDataSource for bio data
cube (BDQ) object. It provides implementation to fetch the portion of data for BDQ from the
server and to extract the required data from the page. It converts x and y co-ordinate into the
dimensions of the 3D representation of the BDQ object.

e PageDimension is used by data source to paginate the data. It gives the dimension of the
pages of a particular data. Page represents a small block of data. The huge data can be
broken down into the pages. Pagelnfo represents metadata about the page. It provides
information like starting x and Y coordinate of a page in original data.

e LazyTableModellnterface: This is marker interface for the table models that uses
LazyDataSourcelnterface to fetch actual data.

e DefaultLazyTableModel: delegates all calls to the contained data source.

e Cachelnterface: provides method to cache the pages of the data. This is used by data
source.

¢ BucketCache: This is implementation of the cache based on bucket of the pages. It keeps
the fixed bucket of the pages. Each page can go into a particular bucket depending on its
coordinate. If a particular bucket is already occupied, the new page replaces existing page
from that location.

e MatrixCache: This is similar to bucketCache with two dimensional bucket structures. Pages
are put into a particular location of the matrix based on its coordinate. If it is already occupied
the new page replaces existing page from that location.

Page 33

caBench-To-Bedside Design Document

L :
winterfaces i i Hoe e g
LazyDataSourcelnterdace RegeDinension Page Pagelrfo
~ getRowCoumnt]) © it - noOfRows: int : S s [stark¥: int
~ getColumn County) it e e Gl it At Pagelndd | ctartv: int
o getColumafizee i) - Shieg
~ getDatafet it | Olect + Pagelimensiondint, int + Page(Pageinfo, D) + Pagealnfaint, int)
~ getCumEmtPage () Page + getNoOfColumnsl) : int) getPageInfoO'lPagelnfo + equalgObject): boolean
~ petCache() : Cachedttedare i G e ey + getData):D + getStati): int
~ setCache(Cachehtedaes) | void + getStadv(: int
#pageDimension + toSting(: String
;_‘l,l ________ o winterfacen
H ¥l : Cackelnferface
e e -eache |~ isCacked (Pageiio) hoolean
AbstracilazyDaia Fource n pubPRge=DE) o
cumentPage: Page=D= ~ getFRgesti) Fage=0=
pageDimenszion: Pagelimension ID)
cache: Cachelnterface % T e
in % o I
+ getRowCount]) : int —: ——'L _______ __:
+ getColuomnCountd:int -} o T TTTTT MatrisCache
+ getColumnMamelint) : String ECRetaEhe
+ getDataiint, int): Object - pageCache: Page=D= () - pageCache: Fage<D= ([0
+ extmctOstafmomPagefrt, fnt) | Ot - cacheSize: int - sacheSize: int
+ fetchPagelats Fageinio) [Fage 0=
getPagelnfofint, inf): Pagelnfo + BucketCache(int) + MatrixCache(int)
+ getCache): Cachelntedace + BudetCache) + MatrixCachel)
+ zetCachse(Cachelnterface]) : woid + isCachediPagelnfo): boalean + isCached(Fagelnfo): boolean
+ getCumentPagel: Page<b= + putfPage) : woid + putPage): waid
+ getfPagelnfo): Page + get(Pagelnfo) : Page
[‘& - getCachelocationiFagelnfol : int - getCacheXlocation(Pagelnfol: int
- getCacheylocation(Pagelnfo): int
EDGDats Source Tahleidode!
uninitailisedRecord: IPattiallyinitialized30Record «interfaces
Lzzy TahleMode!nferface
+ getRowCount: int A
- getCqumnCounhf_? I . i '_D:extends LazyDataSourcelnterface}
+ getColumnMamedint) : String | |
+ extractDataFromPagedint, int): Object B e et
+ fatchPageData(Pagelnfa): Page DefaultLazyTableModel
getRangex0Object[[. int, int) : List<LazyFarams.Range* & dataSolce D
- getCloumnRagelint) : LazyFarams.Range
+ getColumnsDatacint]]) : IPatiallylnitialized30Record + DefaultlazyTablebodel(D)
~tableSource data souree + getRanCount] : int
+ getColumnCount]) : int
DefsultDetailed Panel + getColumnMName(int) : String
Thres DResUlt Object Details Panel fiaetslumnisdassing)s Blassshy
+ isCellEditablelint, int): boolean
- threebTable: CabZbTable + getWalueddlint, int): Object
~ tfableSource: BDQDataSource + zetValueAtObject, int, int) @ woid
isitholeColumnSelected: boolean = false + addTablemodellistenenTablemodellistener : woid
tableScrallPane: JScrallPane + removeTableModellistenenTablemodellistener : void
serialWersionlID: lang = 1L
tabletdodel %
+ ThreebResultObjecthetailsP anelflRecord)
initEUID : woid
- addRewHeader) : void FUi kil
in gsthatalanlen bbb laple, + BDOTableModel(BDODataSaurss)
+ getlsiWholeColumnSelected(: boolean i tCal val indll Obisct
+ getCSVDatan: Sting detbalmnizie ozt

Figure 19 Classes Involved in Lazy Table Model component

This component has been used to display Bio Data cube object. Following sequence diagram
shows further details.

Page 34

caBench-To-Bedside Design Document

=d LazyTable sequence /

ThreeDResult Object DetailsPansl EOQTableMaodel EBOOQD=ta Source Matrix Cache

gethaluefiiy

Object:= geth ata(ranol. columniod
Ll

Page:= geﬁp;gelnfnj ‘\" 1

if not found_‘r-l:_l

R (=17 7T
gethataFromSenner E
L] |
puttpage)

Object:= extracthrataFromPagelromMa,columnial

= |

Figure 20 Flow of events in displaying BDQ

Page 35

caBench-To-Bedside Design Document

8 Dynamic Ul generation for add/edit limits

8.1 Overview

The ‘Add Limit’ / ‘Edit Limit’ functionality of search data module allows the user to specify
rules/constraints on the attributes of a selected entity like “edu.wustl.fe.Gene” or “Gene
Annotation” respectively. Once the user decides the category on which to add a limit, the system
auto generates the user interface with following properties:

- Alphabetically sorted list of attributes

- Attributes name are modified to make them user friendly manner (for example,
clinicalDiagnosis should be Clinical Diagnosis)

- Based on the data type of each attribute

- Applicable set of operators are visible

- Data type based validation

- If the attribute has permissible values, these are displayed in a multi-select list box.

The section below describes the design details of dynamic Ul generation for the Add / Edit limit
functionality

8.2 Design

The dynamic Ul generation is based on the following principles:
e The metadata for each attribute contains all the required information like data type and
permissible values
e An XML file contains information about the display names for operators and Ul
properties.

For each entity the Ul is auto generated based on its metadata and the XML file configuration

8.2.1 Metadata representation

Before we go into details of dynamic Ul generation, is it important to understand how
metadata for an entity is represented. For more details on these classes please refer to
section Metadata Repository.

8.2.2 Dynamic Ul configuration XML

This requirement needs mapping of attribute data type to all the information needed to
visually render the Ul component corresponding to that attribute. The information for
rendering includes the following:

e List of operators for a given data type and context (enumerated or non-enumerated)

e The class name for the actual Ul component to be instantiated, again for a given type
and context.

e The Ul component representing any attribute should show user friendly attribute
name (i.e. by parsing the camel case words)

e Condition selection drop-down box

e Control to specify values for selected condition. This portion of the component is
variable and changes according to the data type and context of the attribute (e.g. all
attributes that contain enumeration, this would always be shown as a multi-select list
box)

Page 36

caBench-To-Bedside Design Document

This mapping is captured in a configuration file in XML format. Reasons for the XML
configuration file.
e Defining a configuration file to capture the mapping information helps abstract that
information out of the code. This means some of the Ul rendering information
captured in the configuration file can change without having to compile the code.

e XML allows for validations by defining a DTD. The validation can further be made
strict by defining data as actual xml elements. Thus (See Figure 3.0), the DTD
mandates that the XML document have a data element for all the data types and
include an operator list for all of them.

<VELEMENT dats-type-control [(enurwerated, noh-ehnurmerated) >
<VELEMEMT enumerated [(string, nuwber, hoolean) >

<'ELEMEMT string (conditions components) >

<VELEMENT conditionzs (in, notin) >

<1ELEMENT in, notion, edquals [(displavhaume) >

Figure 21 Snippet of DTD used for dynamic Ul configuration XML

data-type-control - This is the root node of the control and can contain enumerated or non-
enumerated nodes as children

enumerated - This tag is parent of all the enumerated data types.

non-enumerated - This tag is parent of all the non-enumerated data type

string, number, boolean - these tags are the actual data type nodes which contain information
such as operators associated with this node, display names of these operators, and the
component which will render the attribute of this data type. Refer to file dynamicUl.xml for
this.

8.2.3 Auto generation of Ul

The configuration XML file is parsed using a DOM parser and the information is organized
into the maps shown in the table below. This is a one-time activity and happens for the first
instance, when Ul needs to be dynamically generated for a class or category. All the logic is
encapsulated in the ParseXMLFile class.

Map type Details

Enum -Operator map Key = Enumeration representing data type.
Note: ‘Enum’ in this column implies an | Value = Collection of enumerations representing
attribute containing permissible values. | operators

Enum-Component map Key = Enumeration representing data type.
Value = Name of Ul component to be rendered

Non-Enum-Operator map Key = Enumeration representing data type.
Value = Collection of enumerations representing
operators

Non-Enumerated-Component map Key = Enumeration representing data type.

Value = Name of Ul component to be rendered

Given an ‘Entitylnterface’, for every ‘Attributelnterface’ contained therein, the dynamic Ul
generation generates the Ul component (details given here), based on the metadata of the
attribute. The following flow-chart explains details for this activity:

Page 37

caBench-To-Bedside

Design Document

od Dymamic Wiew

1# Getthe dzplayname
and data type from the
Atribeterterface

28 se data type as key
and query

Attribute contain Py s
Mo

3H Use data type as key
and query
o2 nUmn -compone nt to

get component name to

enum-component mapto
L instantiate

d# e data type as key
and query non-enum map
to get operator list

get comporert name to
instartiate

af Use data type as key
and query
enumn-condtiors mapto
get operator list

E# e reflection &P to
instartiate componet based
on class name [step 2]
passing display rame,
operator list{step 4] ard
Fu's to constructor

E# Use reflection AF] to
instantizte comporent based on
clas rame(step 3], pa=ssing
d=splayname, operator list [step
3lto corstructor

Figure 22 Detailed steps for generating Ul component for an attribute

The SwingUIManager class has a static method generateUIPanel(Entityinterface) that iterates
over the collection of attributes and processes metadata information based on the flow chart
above to generate the Ul component (Cab2bPanel) for that attribute. It then returns an array of
these Ul components that are added to a panel to represent the Add/Limit Ul screen.

The UML diagram below shows the different classes involved in dynamic Ul generation
IComponent - Ul component should provide API to get selected condition, corresponding values
and the attribute entity it represents. Thus one needs to have a common interface containing

these APIs, which every data type specific Ul component should implement. This is the interface
containing methods to get/set Ul component details for every attribute type.

Page 38

caBench-To-Bedside

Design Document

cd dynamic Ul

zinterfaces
ICamparent

o+ o+ o+

getCordition () ;- Shirg

getlfalves()] - Araylist=Shing =
sedComditior (Shimg) o waid
getdttibuteiame) © Stdng
setlalvesiAmaylist=5king =) void

Actioniisterer

BooleanType Panel :
RadioButtonListener

actionPedormedifctionEvent) : woid

-inSt.ance:. !
1

BooleanTypePanel

+

isSelectedilRadioButton) : boolean

EnumTypePanel

StringTypePanel

. ¥

i

Cah 2hFane!
AbsfraciTygePamne!

+F o+ o+ +

getCondition() ; String
getFistCompanent) ;| JComponent
getSecond Comporent] | Soomporent
setCondition(String) : woid
setComoonertPefersree (Shing) © void

Par=zeXhLFile

esetPare!) void

+ o+ o+ o+ o+

getlnstance() : ParsexhLFile
getlonEnumClassMame(String) : String
getEnumClassHamel5String): String

getEnumConditionListString) © ArayList<String=
getMonEnumConditionListString) : ArrayList<Sting=

getattributeMame) : String
NumberTypePFPansl

DateType Panel

SwingUIManager

generatelIPaneliFarsexXhiLFile, Altributelntedface, boolean, Dimension) : Object

generateldIPaneliFarsexhiLFile, Aftributelnterdface, Dimension) : Object

Figure 23 Class diagram for classes participating in dynamic Ul generation

AbstarctTypePanel - This is an abstract Ul component class, which contains common
functionalities needed by all the attribute type Ul components. It implements the IComponent.
This component contains APIs to set Ul for the condition list and user-friendly attribute names.
Additionally it has abstract methods getFirstComponent() and getSecondComponent() to facilitate
implementing class to provide the specific JComponent object specific to the specific data type.
For each data type there is one class which extends this class, for example NumberTypePane for

Numeric data types like integer, long, and double. StringTypePanel for String data type

Page 39

caBench-To-Bedside Design Document

9 Visual Query Interface OR Diagrammatic (DAG) view

9.1 Overview
The primary goal of this feature is to allow the user to do the following:

View the category constraints added to the query in the form of graph nodes.
Link the selected category constraints visually
Edit / delete query constraints

Resolve ambiguities if multiple paths are available between the source and target class /
category constraints to link.

The textual representation of the query expression

The basic design of the DAG view is to visually represent each constraint (i.e. a limit on class or
category) as a node of the graph and allow linking of constraints as edges of the graph.
NetBean’s Graph Library supports visualization and editing of node-edge structures using drag

and drop (org-netbeans-graph.jar), and it is platform independent.

This section describes the design for the same. Chapters Metadata search and Query Object are
perquisites for this chapter.

The diagram (Figure 24 Basic workflow in the DAG) shows the basic workflow of the DAG view.
The sequence of steps involved in the DAG view is as below:

1.
2.

User searches for the classes / categories for which he wants to form a query.

From the returned results, the user selects the class / category of interest. The Add Limit
page shows all the attributes associated with selected class / category.

User specifies constraints on attributes and adds this constrained entity to query graph.
User may search and add different constraints to the query by repeating steps 1-3

User may select any two constrained entities and link them using the ‘Connect Nodes’
button.

If multiple paths are available for selected nodes, user may select multiple paths to
connect these entities.

User may repeat step 6, to connect different constrained entities in the query graph

User may edit constrained entity and change the rules / constraints added on the
attributes of the entity.

NOTE: Two entity nodes can be linked only if adding the selected path doesn’t form a cycle in the
query graph.

Page 40

caBench-To-Bedside Design Document

ad DAG 7

9 Start

(Select the artity)‘%

Cﬁpecif].r conditions on aﬂribute5>

Glick Add Lirnit bl.tl:-:nD

[TES]

Add more limits™

3 [HO]
Link Hodes™

[vES]

Select Nodes in Graph =and | End
Click "Connedt Modes"

Multiple paths pressnt ¥

O] 'Cs.ahact paths from list)0

Has farmed eyclic graph 7

[HO]
Link nodes using selected
paths, update query object

Figure 24 Basic workflow in the DAG

9.2 User Interface Design

This section describes the design of the user interface of the DAG view. It describes the classes
that constitute visualization of the DAG view. The class diagram below details the classes and
interactions amongst them.

Page 41

caBench-To-Bedside

Design Document

cd DAG Ul -

SimoleDocusrentRendersr
Document Renderer

Client QueryBuilder

-m_documentRendearar

i

SPanel

ExpressionPansl

winterfacen
IChenfCueq Builderlnferface

-m_expressionFPanel

-m_quenObject

CahlhPanel

tainDagPanel fmainbagFansl

-m_dagPanel

-m_controlPanel
-m_eventHandler .

-m_mainPanel

JP3mel
Actioniistener

D=agControl Pansl

GraahEventHandler
EwentHandler

-m_viewCaontroller

DefzultlfiewContmiler
Actioniistener

iewContraller

Figure 25 Class diagram for classes in the DAG view

MainDagPanel: This class forms the core of the DAG view and is responsible for
handling different user actions, related to query construction and updating the visual
query graph. To display DAG on panel this class creates a JComponent that renders
nodes and links using createView(...) method on GraphFactory from NetBean’s graph
library.Whenever a user adds a limit UpdateGraph(...) method adds an IExpression
object representing the constrained category to the graph.

o LinkNode(...) method links two nodes if the caB2B server has a valid path
between the selected entities. If the system contains multiple paths between
selected expressions, the ambiguity resolver allows the user to select paths of
interest and links nodes with selected paths.

o deletePath() and deleteExpression() methods delete the selected link and
expression respectively from the Ul as well as the backend query object.
GetExpressionString () returns the textual representation of the IQuery object.
This class also holds a reference of the IClientQueryBuilder (a wrapper over the
IQuery). The backend query building section describes this in detail.

DagControlPanel: This class controls different user activities such as liking selected
nodes and clearing the DAG view.

ExpressionPanel: This class provides the textual representation query object to the
user.

Apart from these Ul classes, there are classes, which hold Ul details of every link and node that is
rendered on the DAG panel. These classes and their details are described as follows:

GenericNode, ClassNode and ClassNodeRender are involved in implementing the
graph node functionality. These are the classes which hold information such as how to

Page 42

caBench-To-Bedside Design Document

render the node, what expression the node holds, and what other nodes are linked to this
expression.

SimpleLinkRenderer and OrthogonalLinkRouterLinkRenderer implement the graph
link related functionality. These classes mainly perform rendering of graph link.

IconPortRenderer and SimplePortRenderer are responsible for rendering connection
ports. In order to link two nodes, one needs to add ports to the source and destination
nodes.

Ambiguity resolver Ul classes

This provides a user interface to show all the possible paths between selected source and target
expression entities and allows the user to select paths of interest. This functionality queries the
caB2B server to get all the available paths between source and destination expression entities.
The class diagram below shows classes involved in implementing this functionality.

cd 0DAG Graph

ArnbiguityObject CahihPanel

+ o+ + + o+ o+

AT EbTE Dizlogithedace
.g : J : 4 Absfracti mibuifpResol ver

AmbiguityObjechEntityintaface, Entitylnteface)

setSource EntityEntitylnterface) ; waid + AbstractamibuityResolver)

nelbslieebnling sRulinfluianace + setTableHeaderBoldi)Table) : void

setT argetEntityEntitylnterface) : waid + zetParentiWindowDialog) : woid

getT argetEntity) : Entitylntedface ﬁ%\

ResalwefAmbiguity

+

ForailablePathsFanel
ResolvefAmbiguity™Wector<AmbiguityObject=, IPathFinden

ResolvefmbiguityAmbiguitydbject, IPathFindern
getF athsForfllAmbiguities]) : Map<AmbiguityObject, List<IP ath==

-availableP athsFanel

Cah2hPame!
Arnbi guityPath Resaolwer Panel

AmbiguityP athResolve P anelVector<Wectar<Entitylnterfacer =)
getFullP athHamedlP ath) : String

getEntityintedface FonrString[]) : Wector<Entityintedface
getlUserSelectadp athal : Map

mainiStrin s woid

+ + + + +

Figure 26 Class diagram for classes related to ambiguity resolver

ResolveAmbiguity: This class queries caB2B server to get all the possible paths
between source and destination entities and pops up a dialog box containing an instance
of AvailablePathsPanel in order to allow the user to select multiple paths. In case of a
single path, this class doesn’t show this dialog box.

AvailablePathsPanel: This panel holds the Ul to show ambiguous paths.

AmbiguityObject: The bean class holding the details of the entities between which the
system has to find paths and resolve the ambiguity.

AmbiguityPathResolverPanel This displays list of available paths for the current
source, target entity and allows user to select one or more paths from it.

9.3 Query Building

The data of the visually constructed query is stored in an IQuery object. DAG holds a reference to
this object. The IQuery object needs to be modified whenever the user links nodes, adds or

Page 43

caBench-To-Bedside Design Document

deletes links or nodes from the view. The IClientQueryBuilder interface defines method to
update the query object according to the user’s actions. ClientQueryBuilder implements the
IClientQueryBuilder. The class diagram below shows different methods on interface.

addExpressio adds the constrained category element to query object when the user adds a limit.
addPath adds the associations between source and destination entities specified by an /Path
object. removeExpression method removes the expression with the specified Expressionld from
the graph. removeAssociation removes specified association between two Expressionlds.

cd DAG Graph

«interface»
IClientQueryBuilderinterface

getQuery() : IQuery

setQuery(IQuery) : void

addExpression(IRule) : IExpressionld

editExpression(IExpressionld, IRule) : IExpression
removeExpression(IExpressionld) : [Expression

addPath(IExpressionid, IExpressionlid, IPath) : List<IExpressionld>
addAssociation(IExpressionld, [Expressionid, IAssociation) : void
removeAssociation(IExpressionld, IExpressionld) : boolean
setLogicalConnector(IExpressionlid, IExpressionid, LogicalOperator, boolean) : void
createExpressionCopy(IExpression) : [Expressionld

getEntities() : Collection<EntityInterface>
createDummyExpression(Entityinterface) : IExpressionid
addRule(List<Attributeinterface>, List<String>, List<String>, List<String>) : I[Expressionid
addRule(List<Attributeinterface>, List<String>, List<List<String>>) : [Expressionld
addParantheses(IExpressionld, IExpressionid, IExpressionid) : void
removeParantheses(IExpressionld, IExpressionld, IExpressionid) : void
setOutputForQuery(Entityinterface) : void

setOutputForQueryForSpecifiedURL (Entityinterface, String) : void
getVisibleExressionlds() : Set<IExpressionid>
addExressionldToVisibleList(IExpressionid) : void

remove ExressionldFromVisibleList([Expressionld) : void
isPathCreatesCyclicGraph(IExpressionid, IExpressionid, IPath) : boolean

e T T T T T T T T T i T S R S

Figure 27 Client query builder interface for client side query building

Page 44

caBench-To-Bedside Design Document

10 Pagination Swing Component

10.1 Overview

In caB2B there are several instances where the user has to view large data sets. The examples
of such instances include viewing results of a metadata search or viewing the results of a query.
Traditionally, viewing of such large data sets is facilitated by enabling scrolling of the results.
However, this approach makes it extremely cumbersome for the end-user to view the results,
especially in case of larger data sets.

A better approach would be to paginate the results, much like the numbers of a book. This
presents an organized view of the results and makes browsing large data sets extremely
convenient.

Since it is required to show a paginated view at several places in the application, it becomes
paramount to design a generic component (hence forth referred to as Pagination component) that
can be re-used across all screens. In other words the nature of data to be paginated should not
matter to the component.

In addition, it should be also being possible to configure the pagination component, both during
initialization as well as dynamically, to paginate results based on some sorting criterion. The
sorting criterion could vary from alphabetical to some context specific sorting (for e.g. sorting a
category search based on the relevance of use). Thus the design for the generic component
should be flexible enough to plug the different sorting algorithms, depending on the context in
which it is used.

It should also be possible for the generic pagination component to select data elements for
certain context-specific operations (like the ability to select data elements to add to the data list
from the query results) by simply turning off or on the feature at the time of configuring and
initializing the component in the application.

Given the generic nature of the component, the pagination component should dynamically
compute the amount of space available on the screen and compute the number of elements to be
displayed on a single page and consequently the total number of pages.

The pagination component is designed based on all the considerations mentioned above. Each
element in the data set is displayed as a hyper-link with the provision to display some description
associated with it. Additionally, the design allows for custom behavior for hyper-link clicks.

10.2 Design Details

The basic design for this component is based on the Swing Ul MVC pattern; please refer to the
UML Diagrams shown below.

10.2.1 View

The JPagination class constitutes the view for the component. It is an instance of JPanel and

is further made up of the following components:

e JGroupActionPanel which extends JPanel and has hyperlinks which can perform group
selection operation on the page elements. More is explained on group selection actions
in Controller part.

e PagePanel which is a JPanel which is used to display the data elements for a given
page. Each display element is again an instance of JPageElement which extends JPanel.

Page 45

caBench-To-Bedside Design Document

e JPageBar extends JPanel, contains hyperlinks to support navigation across pages.

The above three sub components can be arranged in any order.
The page elements which are displayed in page panel can be displayed in different
configurations, the two important configurations are:

1. Alinear list of page elements one below the other displayed in the page panel
2. A grid of page elements displayed in a matrix format. l.e. n page elements by m page
elements.
Pagination component with three sub-component and check boxes for selections

& JPagination Demo

Group Action Panel

Female, Age:31, Collection Protocol Registration [

Check Box to select this element

[|Doe Jane S
Femahe, Age:37, Collection F{Qtncnl Renistration [
Hyperlink to click

Description
[| Ana Williams
Female, Age:32, Collection Protocol Registration [

%smth Mary A

[| Maria Fernihough
Female, Age:31, Collection Protocol Registration |

[1 Doe Jane §
Female, Age:25, Collection Protocol Registration |

"

Page Panel

Page Bar
(<1232

Figure 28 Snapshot of a Pagination component

10.2.2 Controller

» Selections
Some of the group selection actions available on the page elements are:

1. Select All — by clicking on “Select All” hyperlink available in the group action
panel, user can select all the visible and in-visible page elements.

2. Clear All — by clicking on the “Clear All” hyperlink available in the group action
panel, user can clear all the selections they have made in the visible and in-
visible pages.

3. Invert All — by clicking on the “Invert All” hyperlink available in the group action
panel, user can invert the selections made in all visible and in-visible pages.
Using Invert All action second time should bring back the original selections.

Page 46

caBench-To-Bedside Design Document

10.2.3

Group action panel can also be designed to have hyperlinks to select page elements
that are in the visible page only, similarly to clear and invert the selections in the
current or visible page only.

PageSelectionModel provides the backend for the above actions; there are other
APIs in this class to get status on the current selections like

1. Number selections made till now, in all pages.

2. Is any element selected or not.

3. Is selection empty

JPagination provides API to add and remove PageSelectionListener to it. This
enables wuser to listen for element selection, the event received is
PageSelectionEvent if any page elements selection changes.

JPagination has API's to dynamically turn on and off the pagination component’s
elements selectable or not.

Navigation

There are basically three kinds of hyperlinks in the page bar to aide navigation

1. “Next Page”, “Previous Page” hyperlinks usually represented by “>”, “<
characters are used to sequentially navigate forward or backward through pages.
User click on these hyperlinks results in page panel showing the corresponding

page.

2. User can directly view any page by clicking a page index hyperlink. Page index
hyperlinks will be numbers if the pager is numeric pager, alphabets if the pager is
alphabetic pager, etc. These hyperlinks provide direct access to the desired

page, unlike the Next Page”, “Previous Page” hyperlinks which are for sequential
access.

3. Since there can be possibly many page index hyperlinks, page bar usually shows
a small set of page index hyperlinks(5,10, etc) out of the all page indexes. So to
provide navigation through these page index hyperlinks, there is “Next Page
Indices” and “Previous Page Indices” hyperlinks. User action on these hyperlinks
updates the current page indices hyperlinks that are visible.

The text representing the “Next Page”, “Previous Page”, “Next Page Indices” and
“Previous Page Indices” hyperlinks can be changed to any string or characters at the
time of instantiation or dynamically(yet to implement).

Mouse Wheel Support

JPagination implements MouseWheelListener interface to provide fast sequential
navigation through pages. Mouse wheel action automatically updates the current
page index highlighting in the page bar.

Automatic Page Resize:

JPagination when provided with its parent components reference can automatically
resize the pages(i.e. element per page) depending on the free space available with
the parent component. This functionality is implemented by adding
ComponentListener to the parent component and firing appropriate events when the
parent component resizes in the action listener method

Model

The Pager interface and the implementing classes such as PaginationModel essentially form the
data model. The Pager is an interface to the pagination model. The AbstractPager is an abstract
class which provides the skeletal implementation for the Pager interface

Page 47

caBench-To-Bedside Design Document

AbstractPager also provides definition for final method subPage(). This method will be called only
when the pager is non-numeric, to sub paginate the main pages whose size is more than desired.
AbstractPager also keeps a copy of original collection of page elements intact, since this is
needed for future use. Events like, changing the pager at runtime needs the original page
elements collection (This functionality is not implemented in the current version).

AbstractPager has a map data structure which maps page index to a small collection of page
elements called page. The Actually data structures are HashMap for map, String for page index
and Vector for page. AbstractPager also keeps a ready list of all page indices that are there in the
Map data structure as map’s keys.

All concrete pager classes should extend the AbstractPager class and compulsorily override the
page() method, with their own logic to paginate the elements except NumericPager.

The reason PaginationModel implements the Pager interface is to provide consistent API’s to the
view part. If PaginationModel doesn’t conform to the Pager interface there can be chances where
we introduce some methods in PaginationModel which are not there in Pager instances. The
other way of think at it is, since Delegation in the patter used in PaginationModel it becomes a
kind of norm to have all the methods which are available in Pager be present in PaginationModel.

Thus the pagination model and paginating process is clearly separated from the view part by
using Pager interface and its concrete classes.
Pagination Levels: Pagination should be done at two levels

1) Level-1 Pagination: Can be any one of Numeric, Alphabetic, Keywords, Frequency, and
etc based Pagination.

2) Level-2 Pagination: Is always a Numeric Pagination depending on the Level-1
Pagination. If Level-1 pagination is a Numeric Pagination then there is no need to have
Level-2 Pagination. If Level-1 pagination is anything other than Numeric, we need Level-2
numeric pagination since non-numeric pagination doesn’t conform to the condition that a
page should have fixed number of page elements.

Thus level-1 pager is variable, it can be any kind of pagination, but level-2 pagination is always a
numeric pager, if level-1 pager in non-numeric. And this probably explains the reason why the
subPage method in AbstractPager is final, so that the actually concrete classes like
AlphbeticPager can not override it, even by mistake.

If level-1 pager is a numeric pager then there is no work for sub page method.

Example: Let us consider Alphabetic pagination as the Level-1 pagination, there may be cases
like page index “A” having a 20 page elements which can’t be displayed on the screen without a
scroll pane, but page index “B” may have only 2 page elements which will fit in one single page.

But for page with index “A” we have to again break the page with 20 elements into much smaller
page. Numeric Pager is the best choice for this kind of Level-2 pagination.

Level-2 pagination depends on the page size of the selected page in the Level-1 pagination.
Hence the page with index “A” the numeric pager may provide numeric page indices 1,2,3,4 for
page with index “A”, but for page with index “B” there is no need of second level page indices.
Note: Level-2 paging (sub paging) for non-numeric pager is not yet implemented.

Page 48

caBench-To-Bedside

Design Document

10.2.4

UML Diagrams

od Pagination 1

I

ddF Selectionlist E SelectionList swaid
:emo:eg:a eeeSe::ncﬁlonle_?;:n:I(g:a eeeSe::ncﬁloneL?;;)ne‘:jo! wioid Rageladadelfieston
g e hasNextindices() : boalean

: ~pagination b elhdovediid heelEvent) : woid
1 rgnec‘ E flpo\re'_(l entO'JPage"') WIA hazFreviousindices() : boolean
! -atSa|acte dJPageEism n,(,F',ag Elemartiunid nestindices) | VectorsSting®

previousindices]) : Wector<String=

tF LinksDizabled) : woid
setagetinlehisblod) o currentindices]) : Vector<String=

getParentComponent]) : Component

Comporertddzober winterfaces
e o A FPageElentenf
JPagination::Pagination CormponentListaner = gewesc#jﬁoﬂo T Numeric Pager AlphabeticPager
+ eomponentResized(ComponantEvent) : vaid + setlescdpton(Sting) : uokd + NumericPagerFageElementd) % GelElementPePagen tint
+ getbisplayiame) : Shing + getElementsPerPagel : int + setElementsPerP ageling @ void
Eventlistener Fgination Coristarts + se?ﬂ‘aﬂ*@ymamsfﬂdngJ vioid + zetElementsPerPagedint) : woid + getPagerNameq) : String
sinterfacen i + gethragelocation() : Sting + getPagerMame() : Sting
FPagefelecfionlisfoner = semr_agemcatron (S*tnng) Ao
+ gehinhURLD Shimg
+ setlimhURE{Shing) ; void
FageElemantindesx : ge:t:ggec:& _0@30? y
= L= ect) Jword P ool
+ PageElementindexString, inf) + izSelected() : hooleam <I Fag=Elementimpl | | Afgiaciiges |,___._._____:
+ getindexinPageQ : int + setSelectedfroolean) | void 1
+ setindexinPagelint) : void V
+ getPagalnde:a) : String -pageEIementm e
: ::;Pt:::én:d;:ﬁitgnng) Fvaid Cah2hPanel FPager
Actioniisterer + getfageSting) : VectorsPageflement=
-elementinde:x fl-elementindes FropedyChangelisterer + getCumemtPageide ; Stimg
JPageElement + hastiextPage() @ boolean
+ hasPrevousPage) boolean
EvemtOpyect | |+ 9etPagination(): JPagination + frtfage() : VeclorsFageSlements
PageSelectionEvert + getPageElement) : PageElement + mextPage() : VectorsPageElements
+ resetHyperlink : void + previousPagel) : Vector=Fageslement=
+ PageSelectionEvent(Object, String, inf) + resetlabel() : void + getdilFageidices() : Vector=Sting =
+ PageSelectionEvent{Object, PageElementindexy | [+ is5elested]: boolzan + getElementzPedFage) @int
+ getPagelndes) : String + actionPerformediActionEvent : void + setElememtsPerPage) void
+ getindexinPageQ : int + addHyperinkfctionListenenAdionListener : void + getPagedizme) : Shing
2 Gefinde - Py Elemantindex + addHyperlinkéctionListenersVectorsActionListen er=) : vaid
+ removeHyperlinkfctionListe nem@otionListener) : waid A ~pager
+ properyChangeiPropertyChangeEvent) : void :
CahZhPane! -selec{edJPageElement® Eaves Paginationkodel
Actiontistener :pagination -
JPagination::.J Groupction Panel Cah2bPame! i changebagerbagen; vald
+ JGroupactionPanel]) me;:’;gm?;ﬁx::; rRaginationtdodel -paginationhdodel
+ J@roupActionPanel(String, String, Sting) JPagination
+ actionPedormed{ActionEvent) : void
. + resetflllabels]) :void
e el + setPrefSize(Dimension) : woid pagiation
+ getPrefSized : Dimension
+ getPagePanelMector<PageElements) : LXPanel
+ addPageElementfctionListenenActionListenar) : waid
\lf—pageSelectionModel + removePageElementfctionlistenenfotionlistener : waid
+ getPageElementictionlistners]) @ Ve ctor2ActionListeners
winterfacen + changeFagePanalil<Fanel) waid
PageSelechionMadel + getPaginationdodel : Paginationhdodel -pageBar
e Selerleaex g At Bosiear + setPaginationhodel(Faginationhtods) : void e
+ izSelectionSmaty() : hoolean A changebagenbagen yoid _ Antionlistener
+ getSelectionidode) - int + getPageSellec;t.lon.hfodeIO: PageISel_ec‘tlic:nr:dod.el . JPageBar
+ setSelectionifodedat) : void Hisetiag ot ag I void
+ getSelectionCount) ; it cossEsiectablafoboclen) : + actionPerformad(ActionEvant) : woid
+ clearPage (Shing) - uoid + setSeIec‘tabI.eEnahled(hoolean):\fold. + getMedPageTest: Sting
+ selectPageShimg) void 3 setGroupAdlonEnabl.ed(bool.ean).\rold + getPreviousPageText]) : Sting
+ clearal() : void + settEEIIement‘sSier:age(ént). 5 t\rold
i + getElementsPerFage] : in
: f:::;ﬁ.‘:’g:;‘: + is@roupActionEnabled] : boolean -subPageBaraModel\L
e sty o + getSelectedPageElementslserQbjects) : Vectar
+ propertyChange(PropetyChangeEvent) : void JFageBar::PageBarodel
0
i
o
+
¥
0
+

+ o+ o+ o+ o+

| Default Page SelectionModel

Figure 29 Classes involved in Pagination component

Sequence Diagram
The sequence diagram above describes the way in which pagination component is
initialized first. The input to pagination component is a collection of page elements, each
page element implementing PageElement interface

Page 49

caBench-To-Bedside Design Document

Sequence Diagram

«JPaginations
paginstion

1 «Paginationtodels

newLelemets) paginztiontodel

«PageSelectionhodels
nen(paginationy pageSelectioniodel
] «Pagers
v nenelements) S
| page
subPage

allPagelndices:= getallPageindices

oo

neniallPagelndices)

«JPageBars
pageBar

JGrouplctionP anels)
groupActionPanel

firstFage:= getFirstPage

[rou

\' firstFage:= fistPage

H H
pagePanel:= getPageFanelfirstP age)

wlP ageElements

"newielement) pageElement

addigroupfctionFanel)

addipageFanel)

addi{pageBar)

Figure 30 Pagination Sequence Diagram

The steps of event happening while constructing pagination component is explained as below:
1. JPagination accepts collection of elements as the parameter.
2. Creates a new instance of PaginationModel passing elements collection.
3. PaginationModel in-turn passes the elements collection to a subclass of Pager interface.
4

Pager internally calls the page() method to paginates the elements collection depending
on some criteria.

5. JPagination then gets all page indices from the pager to construct JPageBar sub
component.

JPagination gets first page from the pager to construct the page panel sub component.

7. JPagination constructs JGroupActionPanel sub component, and adds all these three
subcomponents to it.

Pagination Usage in caB2B:
In the current version of caB2B, pagination component is used in two places

1. In the advanced search feature to show the search result. Here, selection of page
elements is not needed; hence elements don’'t have check boxes and the group action
panel. This is achieved by calling appropriate API's in the JPagination class.

Page 50

caBench-To-Bedside Design Document

2. In View search result feature to show the results got from data services. Here selection of
page elements is important, since user would like to add the selected elements to the
data list. Hence check boxes and group action panels are enabled by calling appropriate
API’s in the JPagination class.

These are the two instances which highlight the fact that Pagination component is generic in
nature, which can be used in scenarios where long list of data needs to be displayed in the GUI.

Page 51

caBench-To-Bedside Design Document

11 Search Data Wizard

11.1 Overview

The search data for experiment dialog is a wizard based Ul that allows the end-user to
sequentially follow all the steps required to build, fire and view the results of a caB2B query. In
this document, we shall understand the basic composition of the wizard as well as the navigation
mechanism while moving from one step to another.

11.2 Class Diagram

The following is the class diagram that illustrates the composition of the search dialog wizard.

cd Search Wizard Classes /

Cah2hPanel Cah2hPans!
SearchCenter Panel Actionlisterer
— - SearchMawvigstionPanel
+ getidentifierCount] : int
+ getSelectedCardindex): int + SearchMavigationFanelibainSearchPanel
+ getSelectedCard] : JXPanel + actionPerdormed(ActionEvent) : vaid
+ setSelectedCardinde:int) @ woid + enableButtonsl :woid
+ getldentifienint) : String + showCardibooleand: waid
+ resed]) o woid + gotefAddlimitPaneld : waid
+ getChooseCategomyPanel): ChooseCategonyPanel + gotoDatalistF anelfID ataRowi : woid
+ getAddLimitPanel? : AddLimitPanel
+ setChooseCategonP aneliChooseCategonPanel) : woid -m_BottomPanel
+ setdddlimitFaneliAddLimitFanel) woid +m mainSearchFPanel
11|\. -m_CenterPanel Cah2hFPane!
Cah 2hPgmel MainSearchPanel

SearchTopPanel -m_ToplabelFanel

getQuenObject]) : IClientQuenBuilderintaface
zetuenObjectIClientQuenBuilderinterface) : woid
wproperty gete getCenterPanel): SearchCenterPane|
getTopPanell: SearchTopPanel
getMavigationP anel’ ; SearchMavigationFPanel
MainSearchPanall)

gethratalish?) : [atalist

+ zetFocusint, boolean) : void

+ o+ 4+ 4+ o+ o+

Figure 31 Class diagram for the Search dialog wizard

MainSearchPanel is the container class that represents the main wizard Ul. It is an instance of
Cab2bPanel and uses an instance of BorderLayout to manage the layout of its components. It is
made up of the SearchTopPanel (added to the north region), the SearchCenterPanel (added to
the center region) and the SearchNavigationPanel (added to the south region). The component is
initialized at creation time.

The class provides getter methods to access each of these panels, so as to facilitate
communication between the panels (For e.g. it is required for the SearchNavigationPanel to
communicate with the SearchTopPanel). It also stores a reference to a cab2b implementation of
the IclientQueryBuilderinterface, so that the reference can be available at every stage of the
query building.

Cab2bPanel is a customized panel so that certain properties (like background color) can be
centrally set and used across the application.

SearchTopPanel is the component that forms the top section of the wizard and its function is to
visually indicate to the user the step that he is currently performing.

Page 52

caBench-To-Bedside Design Document

This component is an instance of Cab2bPanel and is composed of as many numbers of panels
as there are steps in the wizard (in this case 5). It uses an instance of GridLayout to manage the
layout of the child panels. Each panel is made of an instance of Cab2blLabel containing the
appropriate text for the step in the wizard. The component is initialized at creation time such that
panel corresponding to step1 has a white background and no border, while the panels for the
remaining steps have a blue background and a LineBorder, which is black in color. The panel
with the white background is always used to indicate to the end-user the step that he/she is
currently performing.

The setFocus (int index, boolean binForward) public API sets the background color of the panel
corresponding to the step indicated by the index parameter, to white. The boolean parameter is
used to indicate the traversal of the navigation so the adjacent panel (to the left or right
depending on direction of traversal) can be reset.

SearchCenterPanel is an instance of Cab2bPanel and is a container class for all the Ul
components needed for each step in the wizard. The Ul component for each step is again an
instance Cab2bPanel; thereby making this a container of as many Cab2bPanels as there are
steps.

It uses an instance of CardLayout to manage all the cards or in other words to manage all the
Cab2bPanels needed at each step of the wizard. This component is initialized to contain and
show the first card corresponding to the first step. Subsequent cards are added dynamically
based on action taken in previous steps and shown as and when the user navigates across
steps. The component also maintains state information like the currently selected card (the
current step the user is on), and provided getter and setter methods for accessing and setting the
value respectively.

SearchNavigationPanel is the component that provides functionality to navigate across the
wizard. It is an instance of Cab2bPanel and uses an instance of FlowLayoutto manage the layout
of all its child components (instances of Cab2bButtons to facilitate navigation)

The component is also the event listener for its child buttons. For all navigations in the forward
direction (refer to sequence diagram), it queries the SearchCenterPanel to get the current step. It
then loads and adds the Ul component corresponding to the next step to the SearchCenterPanel,
if that is not already added.

However, there is an exception to the above action. In case of viewing search results, the Ul
component for viewing search results is always newly created and added.

For navigations in the reverse direction the component merely asks the SearchCenterPanel to
show the previous card. If the next or previous component is successfully loaded and added, it
then calls the setFocus() APl on the SearchTopPanel .

11.3 Sequence Diagram

The sequence diagram below illustrates the flow of control when the user chooses to navigate
from step1 to step2 (for the first time) in the wizard.

Page 53

caBench-To-Bedside Design Document

Logicd Madel 7

EE EeanchMawigetionPans [Fesrch CenterPans SearchTop Panel Add L it Parel
A
Ac‘tlnﬂ
, nexd E E E E
) : : :
int= getSelededCardind ex i T S - i
L | 8 !
: | Constructor inwaked. | E
© AddUimitPanel) | | Pt
1 1 T rl...l
add@ddUimitPanel) I ‘ ;
rl_,.l :
setSelected Cardind exint) ' : " E !
SearchTopP anel:= getTopPanel |) i
"] : :
st ocudint)) i i

Figure 32 sequence diagram for navigation from step1 to step2 in the wizard

Page 54

caBench-To-Bedside Design Document

12 View Results

This section explains the classes involved in showing the query result.

od Wiew results model /
ThreeDResultObjectDetail=Panel || ResultConfigurationParser: Result CorfigurationParser
:DatalistTransformer
-resultConfigurationhapper
~datalistTransformer Result ConfigurationParser:
I :ErtityTransfor mer Irfo
| Rexdends IRecc\rd:
R A Za |
Actionlise
Cad 20 Pame! CategoryObject Detail=Fanel _ sl
DefauitDetailedPanel SimpleSearch I.?esultlBree.id Crumb Panel :
‘Hyperlinl ActionListener
Cah2hPane!
FesuliPanel #saarchFanel \l/ ~searchFanel
Result Pansl Factory CahlhPane!
SimpleSearchResultBreadCrumb Panel
~breadCrumbFanel mbreadCrumbPanel J_' \
Result ObjectDetailsFPanesl YiewrSearchResults S5imple Panel Cah 2hPanel
BreadcrumbFanel
Related [ata Panels
-wiewnP anel
Cah 2hFane!
Cah2hPane!
=, |—||-¢ Maodel fs iation DataPanel YiewrSearchResults Panel
AbsfracfissacizfedDaiaP ane! SriooiAssoRElonDa=TEnS
Avtionlistener
SimpleSearchResultBreadCrumbPanel :
AssocistedDatafctionlistenar
OutgoingAssociationDataFanel IncamingAssociationData Pansl e e
SimpleSearchResultBreadCrumbPanel :
:Bread CrumbAction Listener

Figure 33 Classes involved in displaying query results

¢ ViewSearchResultsPanel displays the result of the query in two ways. In a simple view
and a comprehensive view (not yet implemented).

¢ SimpleSearchResultBreadCrumbPanel represents one breadcrumb page of the result.
It contains result panel, a data list summary panel and a breadcrumb panel to return to
this result page. It contains result panel for a single object or list of object. It also provides
the implantation for the listener of the breadcrumb, to view the details of a particular
object and to show the related data.

¢ ResultPanel is an abstract class for the panel used to for the result. It provides the
operation like add to data list and apply data list.

¢ ViewSearchResultsSimplePanel is a panel to display the list of objects. When the result
of the query contains more than one object this panel is instantiated. It contains the
pagination component to show the result.

¢ ResultObjectDetailsPanel is a panel to display the details of single object. When the
result of the query contains a single object or when the detail of object is viewed, this
panel is instantiated. It uses ResultPanelFactory to create the panel which is applicable

Page 55

caBench-To-Bedside Design Document

for the object to be shown. It also contains the reference to the applicable related data
panels.

e AbstractAssociatedDataPanel is the base class for all the data panels used for showing
associated (related) data. Its iniGUI() method creates the hyperlink for each of the related
data.

¢ IncomingAssociationDataPanel represents the data which is related by incoming
association for the object that is currently displayed.

e OutgoingAssociationDataPanel_represents the data which is related by outgoing
association for the object that is currently displayed.

¢ InterModelAssociationDataPanel represents the data which is related by an inter model
association for the object that is currently displayed.

=d wiews result sequence diagram /

ViewSearchResultsPanel Fiesult Panel Factor:

ot SimpleSearchResultBreadCrumbFanel
instantiates

i EreadcrumbPanel
instantiate

getResuItF.'aneI

ResultObject DetailsPanel

instanti ates
bt i

! Irter Model AssociationDataPanel
i instantiates

e M tan N

¥ ! : W

Figure 34 Order of instantiation of panels for view results

Page 56

caBench-To-Bedside Design Document

13 Record Customization

13.1 Overview

A user-defined query, represented by the query object, is transformed to appropriate DCQL.
DCQLQueryResults obtained by executing this DCQL is then transformed into an /QueryResult.

IQueryResult is a caB2B-specific representation of the results. Logically, /QueryResult is a
collection of records (represented by IRecord’s). This chapter explains how this caB2B-specific
representation (i.e. IRecord) can be customized based on the application/category being queried.

The IRecord
IRecord is a map from an attribute to its value.

13.2 Why customize IRecord?

The default IRecord represents the record of a UML class, as obtained from a data service that
uses the default (de)serialization mechanisms of caGrid. A custom subtype of /Record would be
defined to add more information to such a record. Such a need can arise due to following
reasons:

Custom (de)serialization by data services

A service might in some cases return more information than can be represented by
IRecord. An example is the caArray service that returns identifiers of classes associated
to the target class. To store this information, a custom record has to be defined.

Complex attributes
Some entities can have complex attributes which cannot be represented directly in
IRecord. For example,

o A BioAssayData record obtained from caArray data service has a bioDataCube
attribute. This is a three-dimensional array of objects.
o Each category record has other associated children category records.

13.3 Steps in customizing a record

1.

Identify the entity or application for which the customized record has to be defined. Define
appropriate subtype of /Record, say ICustomRecord.

Implement any of the following components related to this customization:

Query result transformer: Responsible for transforming CQLResults into
ICustomRecord.

Record details Ul panel: Responsible for displaying /CustomRecord on the Ul.

Data list transformers: Specify how an [CustomRecord is persisted as part of a
datalist
o Data list saver: Responsible for saving an ICustomRecord when it is part of a
data list.
o Data list retriever: Responsible for creating an appropriate /CustomRecord
while retrieving a data list.

Register these implementations in the configuration xml “ResultConfiguration.xml”.

Page 57

caBench-To-Bedside Design Document

13.4 Result Configuration XML

<applicationss
<application nawme="calrray'™ >
“ehtity name="gov.nih.nel.mageom. domwain. BiclkssayData.BiolAssayhata™>
<result-transformer:>
cabib.server.caarray.resulttransformer . BiokssaylDataResultTransformer
</result-transformer>
<result-renderer:
edu.wustl.cabib.client.ui.viewresults. ThreelResultlhjectletailsPanel
</result-renderer>
<data-list-transformers>
<zaverrocabib.server.caarray.datalist,.BiokssayDatabatalistSaver</ savers
<retrieverzcabib.server.caarray.datalist.BioAssaybatabatalistRetriever</retrievers
</data-list-transformers>
“fentitys

<entity nawe="gov.nih.nei.mageom. dowain. BiolssayData.DerivedBiolssayDhata™s

“/entitys

<default:>
<wresult-transformer>
cabib.server.caarray.resulttransformer . efaultCalrrayResultTransformer
</result-transformer>
</default>
</application>

<defaultc:>
<result-transformer>
edu.wmustl.cabib.server.queryengine.resultcransformers. lefaultfueryResulcTransformer
</result-transformers
<result-rendererx
edu.wustl.cabZb.elient. . ui.viewresults.DefaulthetailedPansl
</result-renderer>
<data-list-transformers:
<gaverredu.wustl.cabZb. server . datalist.DefaultbatalistSaver</savers
<retrieverredu.wustl.cabib.server.datalist.DefaultbatalistRetriever</retrievers
</data-list-transformers:
</default>
<fapplications:

Figure 35 Sample ResultConfiguration.xml

Note that the following are provided by caB2B:
e Customizations for “CategoryEntityGroup”
e caB2B defaults (the outermost default tag)

caArray is an example of a custom-extension. caArray has its own default query-result-transfomer
that overrides the caB2B default query-result-transformer. But caArray needs customized result-
renderers and datalist-transformers for the class BioAssayData.

13.4.1 ResultConfigurationParser

This is a singleton class which parses the ResultConfiguration.xml file and provides following
methods for accessing the entries. If no entry is found for a given entity, the caB2B default is
returned.

e getResultRenderer(String applicationName, String entityName)

e getResultTransformer(String applicationName, String entityName)
e getDatalistSaver(String applicationName, String entityName)

e getDatalistRetriever(String applicationName, String entityName)

Page 58

caBench-To-Bedside Design Document

13.5 IRecord and its extensions

cd records

Sedalizanle [=7] |
winterfaces itatanes
IRECDIm x ILazilpinifializableRecond
o gedFecoms () Aecom i
~ putlialveFordiidbote Ald butelrtenzee, Shing) woid P,
o 0
~ getlialveFordiicbute (Aidbuteirtedzoe) ¢ Sting e
~ getARihutes(; Setedttdbubeiterane = T AT D
~ cogylalvesFmos iRecom) | woid n wewiliazyPamas, int] Padiallpritizlized Recor
winterface s
IParfiallylnifializedRecord
- o Ramdle] o int
nteitaey ~ o jmitializationPamne) | L2rvPamEns
1300 zizRecard

~ gedCuhe] Obiect? fi g

~ getDin tahels]) ; Shingl] sinterfaces

n getlin 2apels) | Shing)] {ﬂ IEullplrifiglized 30K econd

o gedtin SLabhels) o Shieg [fi

'—:'_'!'-.
L=
cafrray
zinterfacen extensions
I\Parfizllylnifialized 30Recond
.{ﬂ zinterfaces

IPardiallylnifializedBicA 553 yDafakecond

wintarfaces

IFullyinifizlizedBiod s5ayDafafecord

winterface ::]

ICaArrayRecond :]

winterfacex

A rrayCafeqoryRecand

winterface

Oafegoria!Classiecond

o getthilden Categona! [HaessRecony =0 o =Categoial Hass, Lst=iCategoial HaseRecom ==
~ getlategonal Glass) @ Categonial Hass
o Fod Gategnrfa.'ﬁ'assﬂer:nm’&fﬂateg o3 Class, et =itategori sl ClaesRecom =) void

V__V

winterfaces
IRecord WithA ssociafedd s

o getdzeocigted Glassesdentifers] | Wep =Azsooiationimtedaoe, List<Sdng ==

Figure 36 IRecord and its extensions
Following are the basic interfaces; other interfaces are either markers or mixins.

¢ |Record: The most basic interface; it represents a record as a set of attribute-value pairs.

Page 59

caBench-To-Bedside Design Document

¢ |RecordWithAssociatedldentifiers: Represents a record that can provide identifiers of
associated classes as well.

e I3DDataRecord: Represents a record that has additional three-dimensional data.
Methods provide the 3D matrix, and metadata about the dimensions.

e IPartiallylnitializedRecord and IFullylnitializedRecord: These interfaces are used for
lazily initializing a record. See Lazy Table Model (Chapter Custom Ul components) for
more details.

¢ ICategorialClassRecord: Represents the records of a category. The records form a tree;
the structure of the tree corresponds to the tree of classes in the category.

13.6 Query Result Transformers

A query result transformer is defined by the interface
edu.wustl.cab2b.server.queryengine.resulttransformers.IQueryResultTransfomer<R extends
IRecord, C extends I[CategorialClassRecord> and is responsible for executing a DCQL and
transforming the results into an appropriate /QueryResult. Following are the methods in
IQueryResultTransformer.

e |QueryResult<R> getResults(DCQLQuery query, Entityinterface targetEntity);
<R> the type of records created when executing a query for a class.

Parameters:
o query the DCQL.
o targetEntity the target entity (corresponds to the target object of the dcql).

¢ |QueryResult<C> getCategoryResults(DCQLQuery query, CategorialClass
categorialClass);
<C> the type of records created when executing a query for a category.
Parameters:

o query the DCQL whose target object corresponds to the actual UML class
represented by the categorial class.
o categorialClass the categorial class.

Class diagrams for query result transformers are shown below.

Note: The text on the generalization links refers to type parameters e.g. declaration of
DefaultQueryResultTransformer is class DefaultQueryResultTransformer extends
AbstractQueryResultTransformer<IRecord, ICategorialClassRecord>
QueryResultTransformerFactory refers ResultConfigurationParser to obtain the appropriate
transformer.

13.6.1 Inbuilt implementations of IQueryResultTransformer

e AbstractQueryResultTransformer This abstract class provides a skeletal
implementation of a query result transformer. Concrete implementations need only
implement the createRecords() and createCategoryRecords() methods.
Additional hooks are provided and can be used to customize the creation and population
of the records in the result.

¢ DefaultQueryResultTransformer This is the caB2B default query result transformer. It
parses the gov.nih.nci.cagrid.cqlresultset. CQLQueryResults xml and extracts the values
for the attributes of the target entity. The records in the results are of the basic types
IRecord and ICategorialClassRecord.

Page 60

caBench-To-Bedside Design Document

13.6.2

cd Guery Result Transformers /

winterface:s
IQueryResulfTransfornmers® exfends IRecord, © exfernds ICafegonialClassiecord=

m getResultsDCOE GQuery, Extityittedace) [IuenyResult=F=
~ getCategoryAe etz DO Guery, Categorda! Glass) [iGuenResult=Cs

'&I{H. C=

AbsfraciQuery ReselfTransformersi exfends \Fecord, C exfends
ICafegarigiClassRecard=

getResultsgDCOLQueary, Entitylntedface) : IQueanResult<R=
executeDogliDCQLQuens : Map<5String, CQLQuenyFResults=
getCategonyResults{DCOLQueny, CategorialClass) : IQuensResult<C=
createCategonyResulfEntitylntaface) : [QuenyResult<Cx
createResulfEntitylnteface) : IQueryResult<R:>

copyFromRBecardiC, B : woid

copyFromPBesulflQuenResult=C=, IQueryResult<R=): void

cregte Aecom s 5y, CRLGwerResults, Entityivtedace) List=R=

cegte CategoryRecond (Categoial Hlass, Setdidbutelrterdaee =, Recom'yd) - G

HOE E HE HE H + %+

=|Recard, ICategaorialClassRecord>

Default QueryResult Transfor mer

Ileaf}

createRecordsString, CALQueryResults, Entitylnteface) : List<IRecord»
oreateCategonyRecordiCategorialClass, Set<Atributelntedface=, Recordld): ICategaorialClassRecard

GueryResultTransfor rer Factory

Ileaf}

+ createTransformenEntityintedace) : IQueryResultTransformer<?, 7%

Figure 37 Query Result Transformers

Customization example — caArray

The interface cab2b.server.caarray.resulttransformer.ICaArrayRecord is used to represent a
record of the caArray application. As explained previously, the caArray service returns identifiers
of classes associated to the target class. Thus, an application-level transformer is defined for
caArray that uses the caArray deserializers and reads this information.

AbstractCaArrayResultTransfomer: Provides an implementation of the method
createRecords() of AbstractQueryResultTransformer. It also handles the deserialization
of the caArray results xml into objects and transforms these objects to /CaarrayRecord
using reflection.

DefaultCaArrayResultTransformer: This is the caArray application level default
transformer.

BioAssayDataResuliTransformer: The caArray service returns a biodata cube as data
associated to any BioAssayData. This transformer is required to read the biodatacube
and transform it to an appropriate /PartiallyinitializedBioAssayDataRecord. (For details of
lazy initialization, refer Lazy Table Model (Chapter Custom Ul components)

Page 61

caBench-To-Bedside Design Document

od caArray Query Transformers /

AbsfraciueryResulfTransformer=R exfends IRecoard, C exfends
ICafeqanizlClassRecard =

getResultaDCOLOueany, Entitylnteface) : IQueryResult<R >
executeeglDCRQLQUueny] : Map=5String, CQLQueryResults=
getCategonResutsDCOLQuerny, CategodalClass) ; IQuenResult<C=
createCategoryResulfEntitylnterface) : IQueryResult<Cx>
createResulfEntityIntarface) : IQuenyResult<R>

copyFromRBecord(C, B : wvoid

copyFromRBesultlQuenResult<C=, [Quenfesult=R*): waid

cregteRecom s(5hdrg, COLGuenfesults, Entitvitterzoe) @ List=Rr=

cegte CategoryRecom (Categonial Class, Set=ditdhuteintedace =, Recomi) @ C

H O K E E K+ R+

=R, ICafurrayC ate goryR e cord =
|

Iueny e sult Tran sfomrer
AbsfraciCaArray e sulfTransfonmersl exfernd s ICaAmrayFecord>

createRecords5tring, CQALQuenResults, Entitylnterface) : List<R>

createRecordF orObjechString, Object, Entitylnterface) : R

cegte CadAma yRecon (Set=Aldhuteirtedaoe =, Recomdit) | R

createCategonsRecordiCategarialClass, Set<Attibutelntedfaces, Recordld) : ICafrrayCategonyRecord

O H R

; podices ; ZICaAmayRecord:
=|P artiallylnitializedBioAssayD ataRecord=

Default CafrrayResultTransfor mer

createCafrayRecordiSet-AttributeInteface=, Recordld) : ICafmayRecard

Biof==ayDataResultTransfor mer

createCafrrayRecord{Set<Attributelntedfaces, Recardld) : IPadiallylnitializedBioAssaybataRecord
createRecordForObjech’String, Object, Entitylnterface) : IP adiallylnitializedBioAssayhataRecord
transformCube ToBQD(BiolataCube) : Object]]
getBioAszaysHames(String, String) : String]
getQuantitation TypesMamesaString, String) : String[]
gethesignElementsMamesString, String): String[]

Figure 38 Query Result transformers

13.7 Data list transformers

A data list is saved using the dynamic extensions (DE) API. To do this, following transformations
are needed:

e From [Record to DE specific representation of the record; this is needed while saving a
data list.

e From DE specific representation of a record to its corresponding /Record; this is needed
while retrieving a data list.

The corresponding saver and retriever interfaces are

e edu.wustl.cab2b.server.datalist.Datal istSaver

Page 62

caBench-To-Bedside Design Document

e edu.wustl.cab2b.server.datalist.DatalistRetrieve

These interfaces identify the operations that can vary depending on the record customization. For
saving a data list, a new entity is created for which records are populated. A saver customizes the
attributes/associations of the new entity that is created.

cd datalistsawers 7

winterface
Dafalisiiaversk exfends Recom'=

riitialioe Entityivtedzee] o noio
n getRecom AslzoR) | Wao<AbstactARnbuteirieraoe, Qfect=
= getilewEntity(l | Endityirterace

iy

R

AbsiraciDafalisfsawersk exfend s \Fecord=

newEntity: Entitylnterface
intialized: boolean

I

initialize(Entityinterface) : woid

getRecordfAshdapiR) : Map=Abstractatributelntadface, Object=
transformTohdaplR) : Map<AbstractAttributelnterface, Object>
getMemEntityn]) : Entitylnterface

cre ataMewmEntitEntitylnteface) : Entitvintedface

A popwlFteile wEntityEntityiriedace) [woid

+ o} o+ o+

i

DefaultDatalistSawver
Z|Recard=

populateNewEntitwEntitylnteface) : void

=|CategorialClassRecard:

Datalist OperationsFactory

+ createbatalistS avenEntitylnterdface) : DatalistSaver<?=
+ createbatalistRetrievenEntityinteface) : D ataLlistRetriever<?>

CategoryDataList Sawer

+ initializelEntitylnteface) : vaid
populate NewEntitwEntitylnte face) : void
+ transformTomapllCategorialClassRecord) : Map<Abstractattributelnteface, Object>

I

Figure 39 Data list savers and factory

For example, consider a specialization of /Record called IFooBarRecord which represents
records for an entity FooBarEnt. IFooBarRecord provides additional info, say, through the method
getFoo(). In this case, we can have a FooBarSaver and FooBarRetriever.
FooBarSaver.getNewEntity() method will return an entity that contains all attributes from
FooBarEnt, and an additional attribute called "foo". The method FooBarSaver.getRecordAsMap()
will appropriately put an entry into the map for the attribute "foo", by reading the value from
IFooBarRecord.getFoo().

Then, while retrieving the records, the value of the attribute "foo" of the entity "FooBarEnt" will be
set for the property TFooBarRecord. foo by the corresponding retriever. This would be done in
the method FooBarRetriver. getEntityRecords(List<Long> recordlds).

Page 63

caBench-To-Bedside Design Document

cd Data List Retrievers /

ainterfaces
OzfalistRefrieversl exferds IRecor=

~ initisire [Entityintedzoe) @ void
~ getarityRecom szt omg =) - ListERE

DefaultDatalistRetriewer _l

wreateRecord(Entitylnterface, Set<Attributelnterface=, Recordld) : IRecord

<IRecord= ;

AbsfraciDafalistReirieversR exfernds IRecord=

H*

newEntity: Entitylnterface
initialized: boolean = falze

O K HE 4+ +

initialize(Entitylnterface) : void

getEntityRecordsList<Long=) : List<R=

getEntityRecordsEntitylnteface, List<Long=): List=R=>

getattributesLiskEntitylntedface) : List<Abstractdtributelntedface =

copyOtherFieldsR, EntityRecordintarface, List<? extends Abstractadributelnteface>, Entitylntedface) : void
oreFtefecom (Entitpitedzoe, Set=Altdbuteivtersee=, Recomil) : R

%ﬁlCategoriaICIassRecordh'

CategoryDatalistRetriewver

* O R+

initi alize(Entitylnteface) : wvoid

getattributesLishEntitylnteface) : List2Abstractittributelnteface =

copyOtherFieldsg|ICategorialClassRecard, EntityRecordinteface, List<? extends Abstractattribute intefaces, Entitylnteface) @ void
createRecord(Entitylnteface, Set<attributelnteface=, Recardld) : ICategorialClassRecard

13.7.1

Figure 40 Data list retrievers

Inbuilt implementations of DataListSaver /
DataListRetriever
AbstractDatalListSaver: Skeletal implementation of a DatalistSaver. A concrete

implementation need only implement the method populateNewEntity() to add attributes
and/or associations to the newly created entity.

AbstractDataListRetriever: Skeletal implementation of a DatalistRetriever. A concrete
implementation need only implement the method createRecord () to create an instance of
appropriate subtype of IRecord.

DefaultDataListSaver: This is the default caB2B data list saver; the new entity it creates
is a clone of the original entity.

DefaultDataListRetriever: This is the default caB2B data list retriever; it creates records
of the basic type IRecord.

CategoryDataListSaver: New entities are created to represent the classes and
associations within the category and the records are stored into appropriate entities.

CategoryDataListRetriever: The records from the multiple entities are grouped together
to reconstruct the /CategorialClassRecord's.

Page 64

caBench-To-Bedside Design Document

13.7.2 Customization example — caArray

od caArray Datalist Transformers /

AbsfraciDafalisiRefriever-<R exfernds Recard=

nemEntity: Entitylnterface
initialized: boolean = false

*

initializelEntitvlnterface) : waid

getEntityRecordsList=Long=) : List<R=

getEntityR e cords(Entityinteface, List<Lang=) : List<Rx*

getattributesList(E ntitvlnterface) : List=AbstractAttributelntedface =

capyOtherFieldsR, EntityRecordinterdface, List<™ axtends AbstractAttributeintedface=, Entitylnterface) @ waid
cegieRecom (Entitvitledzee, Set<diidbuteirtedaoe =, Aecom i) @ A

F* O R R+ O+

Z|PariallyinitializedBicfszayDh ataRecord =
|

BioAssayDataDatalist Ratriewer

copyOtherFieldsIP atiallylnitializedBiofAssaybataRecord, EntityRecordinterface, List2? extends Abstractéttributelntedface=, Entitylntedface) : void
createRecord(Entityintedace, Set<Attributelnteface=, Record|d) : IPartialbdnitializedBicoAszayDatak e card

AbsfrectOafalisfSaverdR exfends IRecord=

newEntity: Entitylntedface
intialized: boolean

I*

initializelEntityIntarface) : woid

getRecardfsh ap(R): Map<Abstractattributelnterface, Object=
transform Tohdap(RY : Map<Abstractittributeinteface, Object=
getemEntity’ : Entityinteface

cre ateMewEntitwEntitylnterface) | Entityinterface

oooulatee weEntityEntityintedaee) © uoda

+ %+ o+

x

=|PartiallvinitializedBioAszayD ataRe cord
1

BioAssayDataDatalist Sawer

populateMemEntibyEntitylnteface) : void
+ transformTabdapllP artiallyinitializedBicAszayb ataRecord) : Map<Abstractittributeintedface, Objects

Figure 41 Caarray extensions for data list operations

e BioAssayDataDataListSaver: As explained previously, the records of BioAssayData
contain a biodatacube which also has to be persisted. Currently, this saver creates blob
columns for the biodatacube and its metadata.

e BioAssayDataDataListRetriever: This retriever reads the data from the corresponding
blob columns and populates this in the [PartiallylnitializedBioAssayDataRecord
representation of the record.

13.8 Result Renderers
The result renders are used to render the complete details of single record.

ResultPanelFactory uses ResultConfigurationParser to obtain the appropriate renderer for the
given type of the record. The default render is edu.wustl.cab2b.client.ui.viewresults.
DefaultDetailedPanel. It accepts IRecords and renders attributes and its values in the form of a
table with a row for each attribute.

CategoryObjectDetailsPanel extends the functionality of default renderer to display the tree like
structure of the category. It accepts ICategorialClassRecord as an input. It displays the
attributes of the root categorical class using parent renderer (i.e. DefaultDetailedPanel). It
creates B2BTreeNode structure for the associated child categories. If a particular child has a
single record or one-one association with the parent its records are displayed along with the

Page 65

caBench-To-Bedside Design Document

parent itself and not in a separate node. JTreeTable is the custom Ul component that accepts
B2BTreeNode to display tree structure of the categories.

cd result panel models/

e
| R:extends IRecordI

1

[S|

ab2bPanel
DefaultDetailedPanel

CategoryObjectDetailsPanel | | ThreeDResultObjectDetailsPanel

Figure 42 Result Panel Model

ThreeDResultObjectDetailsPanel is the renderer for the caArray object “Bio data cube”. It is a
three dimensional representation of micro array data. It uses LazyTableModel to show the huge
data.

=d Result Panel sequence disgram /

SimpleSearchResult Bread Crumb Panel Result Panel Factory ResultCorfigurationParser| (DefaultDetailed Panel

' gethetailedResultFanel(|Record) - '
T |aetResultRenderenapplicationMame, entityName)

CrefaultbetailadPanel
i e

dolnitialization

DefaultletailedPanel

¥
Bt [l CEET TSR

Figure 43 Flow of events while displaying results

Page 66

caBench-To-Bedside Design Document

14 Data List

14.1 Overview

The user’s selected data is represented by the data list. After adding data into the data list, user
can save it and create experiment out of it. It is more like a shopping cart where user adds the
data in which he / she is interested.

14.2 View Data list

Following diagram illustrate the classes involved in displaying the data list.

cd data list -

Sedalizahle

Cah 2hPamne! +datalist Datalist
DataLlistPanel
-treePanel ~ datalistAnnotation: [atalisthdetadata
b 2hPamel ~ rootDataRow: [DataRow = null
TreePanel|
-detailsPanel ~“resiDaalion
Ciah 2bPame! _ e
Achiorlizhenar winterfaces.
DatalistDetsiledPanel Cortainer HEatp o,
~ m_exportButton: CabZbButton " gz:ﬁc?ggnsgﬁemm'
~ datalistDetailedP I: CabZbP | :
e R S ~ getTitleNode () : DataFow

~ getCooyl - OztaRow
~ gad Child 0tz Aow) o void

winterfaces l"'-parent &
DafalisflefailedPanellnferface :

details of data list object

Treefiode ol

~ getCSl0ta) - Shing . Serglirahle
~ gediio CfSelected Faws) @ int
DataRoner

o gedlata Tahle) : Cahlh TE.EI.'E]

;:?’ TI:? ~ iglata: boolean = true
ra ~

[e

. r
CaplhrPamrel . | Riextends IRecord :
I|
Default Spread SheetviewFPansl e I |
CahzpPame!

DefaultDetailedPanel

Figure 44 Classes involved in displaying data-list

DataRow class represents a single object added into the data list. It gives the tree like
structure if the user’s data. The similar types of the objects are grouped by an IDataRow
and it is distinguished by setting its isData flag to false (It is referred as a title node).

DatalList represents current selected data. It contains a tree of IDataRow. The root of the
tree is represented by a single IDataRow.

DataListPanel is the container panel for data list. It contains
DatalListDetailedPanelContainer and TreePanel

TreePanel contains the tree of the data list. On selecting a particular node its details are
displayed in the DataListDetailedPanelContainer.

Page 67

caBench-To-Bedside Design Document

DataListDetailedPanellnterface is implemented by a class that can be used to show the
details of objects in datalist. It getCSVData() method returns the comma separated
values of the object. This is used for exporting the details of the object.

DataListDetailedPanelContainer displays the details of the selected IDataRow from
TreePanel. If it is title node, then objects under it are displayed in the form of the
spreadsheet using DefaultSpreadSheetViewPanel. If it is a single object the details are
displayed using DefaultDetailedPanel.

14.3 Data List Operations

Save and retrieve are the main operations related to data list.

A new model is created using the dynamic extensions (DE) API corresponding to each data list.
Since a data list is a set of trees, a dummy root entity is created which has these trees as
children. The dummy root entity is thus representative of the data list. Then the records are saved
as records of the respective entities of this model using DE. These steps are orchestrated by the
DataListOperationsController. It has two methods:

DatalistMetadata saveDatalist(IDataRow rootRecordDataRow, DatalistMetadata
datalistMetadata). It saves the data list into the database. In the process, appropriate
DatalistSaver is invoked to obtain the DE specific representation of the records and the
new model to be created. See Data list transformers (Chapter CRecord Customization)

List<IRecord> getEntityRecords(Long entityld). Return records of the given entity. It
delegates the operation to appropriate DatalistRetriever. See Data list transformers
(Chapter CRecord Customization)

Following are the sequence diagrams illustrating the flow while retrieving and saving records of a
data list

sd datalist /

Client DataListOperationsController| DataListOperationsFactory|

DataListBean

T
getEntityRecord (entityld) E

getEntityRecords(entityld)

createDataL istRetriever(entity)

«interface»
new

I = |DatalistRetriever<R

extends IRecord>

appropriate datalistRetriever is:
obtained by referring to

ResultConfigurationParser.

DatalistRetriever.=

getEntityRecords()

1
List<IRecord>:=

X---

List<IRecord>:=

List<IRecord>

X

Figure 45 Sequence diagram for retrieving records of a data list

Page 68

caBench-To-Bedside Design Document

The factory DatalistOperationsFactory provides the appropriate DataListRetriever or
DatalListSaver by referring to ResultConfigurationParser..

sd datalistsave /

Client DataListOperationsController| DataListOperationsFactory|

DataListBean

locate

save Da1aLisl(rootDataRow,da1aIistMe1adatja)

L
sa eDa1aLis|(rootRecordDataRow.denaListMe1ad:ata)
createDatalListSaver(entity)
«interface»
% DataListSaver<R
DatalistSaver.= extends IRecord>|
o
called for each entity in
the data list
getNewEntity()
|
!
Entitylnterface:=
i
! |
getRecordAsMap(record) H
|
'
Map<AbstractAttributeInterface, Object>:=
i i i = !
'
! X ! X

resulting map is persisted using DE

called for each record of that entity. ﬁ

Figure 46 Sequence diagram for saving records of a data list

Page 69

caBench-To-Bedside Design Document

15 Experiment

15.1 Overview

User can create the experiment out of saved data-list. After creating user can perform various
operations on it like visualizing data in the experiment using viewers, perform analysis or filtering
the data etc.

15.2 Experiment Data Model

Following figure show the experiment data model.

cd Experiment Data model /

JFva.io. Sedglizable
Abstract Domaindbject

I

J2ua o Sedalizanle
Additional Metadata

+parentGroup 1

JFug.in. Sedalizahle \

Experi ment Group

S

Ledalizahle
DatalistMetadata

JFua .o Seralizahle

Experi rert

Figure 47 Experiment data model

e AbstractDomainObject is the base of all the domain objects in caB2B. It provides id and
activity status fields required for all the domain objects

e AdditionalMetadata provides the additional information for the experiment and related
objects. It includes name, description, created time and last updated time.

e Experiment contains the one or more DataListMetadata.

e ExperimentGroup is logical grouping of the experiments. It also has a parent group. This
gives the folder (iree like) structure for experiment and experiment group.

o DataListMetadata is the object that represents the actual data saved. It contains the one or
more entity ids that correspond to the DE entity ids created for the saved data.

15.3 Saving an Experiment

Following sequence diagram shows the flow of events while creating and saving a new
experiment:

Page 70

caBench-To-Bedside Design Document

sd Experiment save
SearchNavigationPanel «interface»
ExperimentBusinessinterface
User
: T T
: i i
1 save data list ! !
i
| |
createNewExperiment 1 !
)
NewExperimentDetailsPanel E
)
e > :
, :
setName T i
. >|;;| :
))
]] :
setDescription ! |
: g i
[]
1 1)
setProject ! H
| ") |
)

1 1 1
i&ave ».L i
H Experiment H
1 1
N > |
))
| |
! : !
| ! |
| |
i addDatal istMetadata(datal istMetadata) i
i i
| |
1 addExperiment(exp) !
| >|:|

i

)
: '< """""""""""""""""""" i
1 1
))
))
))
________________________ 1
|j< |
_: 1 o i
' ' X '

Figure 48 Flow of evens for saving experiment

15.4 Opening an Experiment
Following are the classes involved in displaying the experiment.

ExperimentPanel is used to display details of all experiments. It is invoked when Experiment
tab on GlobalNavigation panel is clicked. It contains ExperimentHierarchyPanel on left hand
side and ExperimentDetailsPanel on right hand side.

ExperimentHierarchyPanel is a panel to display experiments folder structure in the form of
project and sub projects. On click of link in the tree details of the selected experiment or
group are shown in ExperimentDetails panel.

ExperimentDetailsPanel displays the information of the selected experiment group or
experiment in a spreadsheet format. On the click of experiment name, ExperimentOpenPanel
gets invoked.

ExperimentOpenPanel is the main panel used to display the actual data in the selected
experiment. It has ExperimentStackBox embedded in left hand side and
ExperimentDataCategoryGridPanel embedded in right hand side.

ExperimentStackBox is used to display data and the other tools that user can invoke on the
data of the experiment. It contains panels to show the categories in the experiment. It also
contains Filter panel, Visualization Panel and analytical services panel. On click of link in the

Page 71

caBench-To-Bedside Design Document

data category tree, the details of selected data category are shown in
ExperimentDataCategoryGridPanel.

¢ ExperimentDataCategoryGridPanel is the base panel to display actual data in the
experiment in the form of spreadsheet. It also acts as container for the dynamic tabs that gets
added as user performs visualization and analytical tasks.

cd Experimernt Ul rnodel /

Cab 2bPanet o orpRetallsPanel [oy ftted Panel
Experiment DetailsPanel ExperimentFPanesl

""-expDet.ailsF'anel |

.m_parentF anal ~expHierarchyPanel

CahlhPanel

E:xperimertHierarchyPanel

-expFanel
Businessintedaoe
Cah 2 Titled Pare! S iEETiAnk Y
] DafalisfBusinessinferface
Experi ment OpenFans|

4\ -experimentStadiBox

+axperimentPansl CapzhPane!
Experirment StackBo:x

T
-m_experimentlataCategoneGridFanel|

-experimentlataCategoneGridP anel

Cah2hPanel
Experiment DataCategor yGridPanel

Figure 49 Experiment Ul model

Following sequence diagram illustrates the flow of events while opening an experiment.

Page 72

caBench-To-Bedside Design Document

=d Experiment Open Sequence Diagram /

2 Global NavigationPanel M=inFrame winterfaces

FAY Experiment Businessinterface

User

- 1
actionPerformed (actionEvent)
L

setOpenExperimentifelcomeF anal
-

Experi mentPansl

==

Expeari mentHiermarchyFansal

eotor= getExperimentHierarchyl)

| ___'_'[;Lj

initGUI0

fie Experi mertDetsilsPansl
initGUID

L '
actionPerformedactionEvent) w

& actionPerdormediactionEvent)

Y

E:perirment OpenPanel| |
init UIG E
n

Experiment:= getExperimel%iiidj

Experi ment Data CategoryGrid Panel

Figure 50 Flow of event for Open Experiment

15.5 Custom Data category

User can filter the data present in the experiment and save that sub set of the data as a custom
data category. When user creates custom category, the current data present in the
ExperimentDataCategoryGridPanel is taken and a new data list is created. This is distinguished
with the other data list by setting its isCustomDataCategory flag to true. This data list is added is
then saved along with its metadata and actual data. After this it is added into the current
experiment and then Ul is updated to reflect the change.

Following sequence diagram illustrates the flow of events while saving the custom data category.

Page 73

caBench-To-Bedside Design Document

=d save custom data category /

$ fFawve DataCategoryFanel || Experi ment Data CategoryGridPanel winterfaces Experi ment StackBosx winterfaces
FiAS OatalistBusinessinterface Experiment Businessinterface
User

actionPeformed

e
settlame I__U
Laall sawelbataCategondtitie)
iz

Datalist

DatzaRow

o

|0 ataR ove= gethootDataRom.O:

addChildichildRow) !

D atalisthletadata:= savel atalist(rootD ataR o, d atalisthetad ata) i
- : :
[H

B
5 W]

0 5 T DatalistMetadats

! ! H L

E setCustornDat:aCategor;r(isCustomDataC;ategory) !

: : ; L |

: : X

i - :

E addDataListToExperiment{experimentld, datalisthdetal atald)

' v v Loall

! updateStackB ox(datalisthdetadata) [

: j L

.

Figure 51 flow for saving the custom data category

Page 74

caBench-To-Bedside Design Document

16 Charting

16.1 Overview

The experiment data saved by the user after searching and saving the data list, can be scrutinize
either by Analytical services or Visualization tools. Cab2b chart is one of the visualization options.
It allows the user to see the various numerical data graphically by generating various charts out of
it.

16.2 Classes Involved
cd charts

Cab2bChartRaw Data Cab2bPane!
+ Cab2bChartRawData(Cab2bTable, ChartOrientation) _chartRawData Cab2bChartPanel
+ getCab2bTable() : Cab2bTable
+ getSelectedColumnsindices() : int[] + Cab2bChartPanel(Cab2bTable)
+ getSelectedRowlIndices() : int[] + setChartType(ChartType, String) : void
+ getChartOrientation() : ChartOrientation + setChartType(ChartType) : void
+ setChartOrientation(ChartOrientation) : void
#chartRawData -chartType
«enumeration»
AbstractChart ChartType

+ AbstractChart(Cab2bChartRawData) ~ ChartType(String)

+ createChartPanel() : JPanel + getType() : Strlng.

createDataset() : Dataset + getChartType(String) : ChartType

createChart(Dataset) : JFreeChart

ActionListener
Cab2bChartPanel::
RadioButtonListener
BarChart
S + RadioButtonListener()
+ actionPerformed(ActionEvent) : void

StandardCategoryltemLabelGenerator|

LineChart «static»
BarChart::LabelGenerator

~ LabelGenerator()
+ generateLabel(CategoryDataset, int, int) : String

Figure 52 Classes Involved in Charting

Cab2bChartRawData stores the reference to the data table, the indices of the rows and columns
selected in the data table, and the series of the chart (i.e. row wise or column wise) to be
displayed.

ChartType is a wrapper around any of the following three types of charts that Cab2bChartPanel
uses to decide which chart is to be rendered.

e BAR_CHART

e LINE_CHART

e SCATTER_PLOT

Cab2bChartPanel displays the requested chart. It also has the options to change the series of

the chart. Cab2bChartPanel:RadioButtonListener acts on the selected option to change the
series of the chart.

Page 75

caBench-To-Bedside

Design Document

AbstractChart is the base class of all the chart classes. It holds the data to be rendered and
provides a functionality that creates the chart panel.
BarChart is the chart class that renders the data to generate the bar chart.
BarChart:LabelGenerator is used by BarChart to generate the labels required in the chart.
LineChart is the chart class that renders the data to generate the line chart.

ScatterPlot is the chart class that renders the data to generate the scatter plot.

16.3 Sequence diagram

X

Client
1

sd Sequence Diagram/

ExperimentStackBox

- 1
actilonPerformed (ActionEvent)

.< ________________________

-l Cab2bChartPanel
[currentChartPanel == null]:
T
L
setChartType(ChartType) new
—

add(Cab2bChartPanel)

Cab2bPanel

JTabbedPane

BarChart

createChartPanel !

.< _________
add(JPanel)

add(Cab2bPanel)

e j::]

CloseButton:performedAction(ActionEvent)

=
1
|
1

remove(Cab2bPan'eI)

X

Figure 53 Flow of events happening during chart generation

Future functionalities
- Display large chart with scroll bars.
- Tolimit the legends of the chart to be displayed.

Page 76

caBench-To-Bedside Design Document

17 Filters

17.1 Overview

This component provides functionality to apply different types of filters on the table. JXTable
provides basic functionality of filtering based on a pattern. It is extended to add few more types of
filters. Based on the datatype of the specified column, following filters are supported

- Pattern filter

- Range Filter

- Enumerated Filter

- Boolean filter

Out of the above mentioned Pattern, Enumerated and Boolean filter are kind of pattern filer. Only
Range filter is implemented in altogether different manner. Multiple filters can be applied on
JXTable using FilterPipeline using method setFilters(new FilterPipeline(filters)); Here filters is an
array of filters where each element in this array is a filter with one condition on any column.

Filter component comprises of two basic components:

3. Popup to take the inputs
4. Actual filter to provide filtering action to the table.

17.2 Classes Involved

cd filter /
«interface»
CaB2BFilterinterface
PatternFilter Cab2bPanel Filter
CaB2BPatternFilter Cab2bFilterPopup CaB2BFilter
-oldfilter %
RangeFilter
MouseListener
EnumeratedFilterPopUp ActionListener
FocusListener PatternPopup
KeyListener
Lol FilterComponent
ApplyFilterPanel
lcon
) ForwardArrowlcon
~m_parentFilter
) -dataFilter
-applyFilterpanel
- JPanel
ItemListener, Mouselistener
ApplyFilterPanel:: MouseMotionListener lcon
ComboltemListener DataFilterUl ReverseArrowlicon

Figure 54 Classes Involved in Filtering data

Page 77

caBench-To-Bedside Design Document

ApplyFilterPanel creates a combo-box of all the headers of the columns in the present table and
on click of its elements, calls an inner class ComboltemListener. This class also maintains a map
filterMap of all the filters that are presently applied on the table.

ComboltemListener handles mouse click events. Method itemStateChanged() first finds the
attribute datatype of the header clicked and accordingly instantiates subclass of
Cab2bFilterPopup.

Cab2bFilterPopup is an abstract base class for all types of filter pop-ups. Its abstract method
okActionPerformed() is called on the “OK” button click of filter pop-up. It returns
CaB2BFilterInterface.

PatternPopup extends Cab2bFilterPopup. This class creates a pop-up asking user to enter
desired search pattern. okActionPerformed() returns Cab2bPatternFilter.

FilterComponent class is a pop-up of range type. This class along with DataFilterUl,
ForwardArrowlcon, ReverseArrowlcon forms user interface for range type filter pop-up.
okActionPerformed() returns RangeFilter. This class primarily handles all the getters of min and
max values for which the range is to be set.

DataFilterUl is responsible for actual Ul implementation of the slider functionality.
ForwardArrowlcon and ReverseArrowlcon generate icons which slide over the slider.

EnumeratedFilterPopUp is used for columns whose values can take limited/enumerated values.
Its okActionPerformed() returns CaB2BPatternFilter. As enumerated filter is nothing but pattern
filter with multiple patterns, this class, while performing OK button action, connects all the
selected patterns to create one single pattern. This pattern then is used to create and return an
instance of CaB2BPatternFilter.

CaB2BFilterInterface is common interface for all the custom filters. lts copy() method creates
copy of CaB2BFilterinterface and returns. This method is responsible for creating a copy of a
filter. It is called while applying filters over the table. Values in filterMap from ApplyFilterPanel are
never used directly to create an array of filters to be applied on the table. A copy of each filter
from filterMap is created and that copy is added to current array of filters. This is done because
when a filter is edited, we need to first check prior values of the same. Thus reference copy is
necessary.

CaB2BPatternFilter extends java class PatternFilter. It has additional toString() method to create

a text of currently applied filter. It is used to display currently applied filters to user.
RangeFilter is a modified a PatternFilter accommodating range inputs and filtering.

Page 78

caBench-To-Bedside Design Document

17.3 Sequence diagram

sdseq

% ApplyFilterPanel

Client
1

1

1
i :
itemStateChanged(ltemEvent)

ICaB2BFilterPopUp|

1
okActionPerformed(ActionEvent)

>_._

ICaB2BFilterinterface)
new

—

CaB2BFilterinterface |
1

addFilter()

copy()

H P
CaB2BFilterinterface
g

L L
1 : !

! [X

X

Figure 55 Flow of events happening when user applies a filter

Page 79

caBench-To-Bedside Design Document

18 Analytical Services Invoker

18.1 Overview

Analytical services are the services which transforms data from one form to another by applying
some algorithm on it. When user is viewing records of a particular entity, analytical services
applicable for that entity are shown in left-hand-side stack box.

18.2 Entity to Analytical Service Mapping XML

Finding analytical services for an entity is a metadata driven process. A file
Entity ToAnalyticalServiceMapping.xml is used to find that. Figure below shows a sample of that
configuration file.

<ENtity Service mapping:
<gervice name="CH3"
TREL="http://nodez55.broad.mit.edu: 6060/ warf/services/cagrid/ Comparat iveMarkerSe IMAGE 3we ">
<method nsme="invoke™"
serviceletailClass="edu.mustl.cabib. cormon.analyticalservice, CHaServiceletails™
servicelnvokerClass="edu.wustl, cabib.server.analyticalservice . CH35ervice Invoker ™
£
</zervices

<gervice name="Servicel™ TRL="">
<mwethod nsme="methodl™ serviceletaillClass="Templetaill™ servicelnvokerclass="TempInvoker"/s >
<method neme="mwethodZ™ servicelbetallClass="TempletailZ™ servicelnvokerClass="Templnvoker"/s/ >
</zervices

<gervice name="SerwviceZ™ TRL="">
<method namwe="methodl™ gerviceletailClazss="" gervicelnvoker(lass=""/>
</gervice>

<gervice name="ZServiced™ TRL="">
<method name="methodl” serviceletsilClass="" servicelnvokerClass="r/>
</zervice>

centity name="gov.nih.nei.mageom. domain. Biolssay.Biokssay™ servicellzme="CHI"/ >
<entity name="Entityl" servicelName="Servicel"/>
<entity name="Entityi" servicelams="Iervicez"/>»
<Entity nams="Entityi" servicelNsms="Ierviced"/ />
<entity name="Entity3" servicelName="Iervice3"/>
<fentity_service_mapping>

Figure 56 Sample EntityToAnalyticalServiceMapping.xml

e <entity>: This file has <entity> tag which specifies which gives mapping between entity
and its one applicable service. There can be multiple services applicable for an entity. For
this there will be those many <entity> tags with different service names.

e <service>: This file has one <service> tag for one service. It has a unique name of the
service which is shown to the user and the URL pointing to the running instance of that
service.

e <method> tag in the service states which method of that service is to be invoked.
Attribute serviceDetailsClass gives the class which holds details of the service. The
class mentioned here must implement ServiceDetailsinterface. There is a method on
this interface getRequiredEntities () which returns list of entities. One of them will be the
one for which user is currently viewing the data. For other entities a dynamic Ul is
generated to specify values for its attributes. Attribute servicelnvokerClass specifies
which class to be used to invoke the service. The class mentioned here must implement
Servicelnvokerinterface.

Page 80

caBench-To-Bedside Design Document

18.3 Classes involved

Diagram below shows the classes involved at the backend. It also shows implementation done for
comparative marker selection analytical service.

cd Analytical Service /

Analytical Service Operations

+ getipplicablefnahticalSenicesLong) : ListeSemwicaletailzsintedface:
+ invokeSenicelSeniceletailzsinterface, List<IRecord>, List<IRecord=] : List=|Recard=
-entitySenviceMapper
1

Sedalizanle ErtityToAnaltical Service Mapper
sIntsrdces - EntityToAnalhdicalSenicebappen)
Serviceledailsinferface + getinstancer) : EntityTofnalyticalServiceMapper
~ gettizolayiizae () o Shing - paseEntityServicebapperahLFilal : woid
~ getReguiredEnbities() List=Entityirberdace=| | . registerServiceElementsListzElement>1: vaid
~ getlendee LR | Shing - registerEntityElementsList<Elemeant=) : woid
~ gedlfethodName) | Sting - getinstancerString, Class<E=1: E
& - getSenviceletailClassNamesString) : List<String=
7 + clone): Object
s X g + getSemwicesEntitylnterface) : List<SemwiceDetailsintedfaces
Eompdrative MamerSglecton + getSemicelnvokenSeniceletailsinterface) : Sericelnvokerlinterface

ChEServicelnvoker

SRRl winterfaces
Servicelnvakerrierface
ChEServiceDatails o fRwoke Sendoe UistiRecom' =, List=iRecon =) - Uit =Recom =

Figure 57 Classes involved in getting and invoking analytical services

e ServiceDetailsInterface: It defines the methods needed to describe any analytical
service like its name, required entities, URL pointing to service instance. All the classes
mentioned as value of attribute serviceDetailsClass in above XML file must implement
this interface

¢ Servicelnvokerinterface: It defines the method to invoke an analytical service. All the
classes mentioned as value of attribute servicelnvokerClass in above XML file must
implement this interface

e EntityToAnalyticalServiceMapper: This is a singleton class which parses the
EntityToAnalyticalServiceMapping.xml file and stores the mapping information into an
internal map. This class provides the methods to get the service interface and the service
invoker interface.

¢ AnalyticalServiceOperations: This class has a method to get applicable analytical
services which returns list of ServiceDetailsInterface for a given entity. It also has
method invoke () to call the service with passed data.

e CMSServiceDetails and CMSServicelnvoker are the real extensions implemented to
invoke comparative marker selection analytical service.

Page 81

caBench-To-Bedside Design Document

19 Appendix

19.1 Dynamic Extension and MDR

19.1.1 Overview

One of the most important components of the DE project is its metadata repository. MDR
can contain metadata about dynamic extensions or static UML models. Each DE is also a
UML model. The MDR is very important component not just for DE, but also for applications
like caB2B and caTissue Suite. The basic backbone of MDR is as shown in Figure 1
Metadata Repository backbone.

LIML hadel

Concept
1% | Attributes Code

1. *| Permissible Walues

Figure 58 Metadata Repository backbone

MDR contains the following metadata for a domain model:
- Classes
- Attributes
- Data type
- Concept codes
- Description
- Permissible values

In case the domain model is created using the dynamic extensions user interface, the MDR
will contain the Ul display properties and the database mapping information for each attribute.
The metadata for the user interface contains:

- Type of Ul Control

- Properties like height, width, password like string and so forth

- Mandatory or optional attribute

Table to which the entity maps and column to which the attribute maps

19.1.2 UML Metadata

This contains all the information present in the UML model like class, attributes, and
associations including the permissible values. Following diagram shows the classes involved
in entity creation along with the relationships involved in these classes.

Page 82

caBench-To-Bedside Design Document

D OpranmicExfersions.:
AbsiraciMeizdaia

createdbate: Date
dezcription: String

DynamicExtensions:: :
id: Leng
#
#

EntitySroup

3

lastUpdated: [ate
name: String

longHame: String
shotMame: String
wersion: String

0.7 ‘/‘F DynamicExdensions::
#entityGroupCollection Abstract Attribute
#attributeCollection
0..* #entityCollection
0.”

Dhyma mic Extensions: Entit; .
#childEntityCollection bt y #entity

0.7 # isAbstract: boolean

1

+parentEntity 1

DynamicExtensions::
1 Associztion
#targetEntity——— f P
1| # direction: String # !sCoIIe.c?lon. Boolean
igldentified: Boolean
isPrimaryliey: Boolean

Cymamic Extensions:Attribute

#sourceRole #targetRaole
A

OhymamicExtensions:Raole

associationTwpe: Sting
maxCardinality: Integer
minCardinality: Integer
name: String

Figure 59 Dynamic extension basic metadata

AbstractMetadata: This is an abstract base class from which the backbone metadata objects
are derived. This class contains generic attributes which are part of all objects (like create
date, last updated and so forth).

EntityGroup: An entity group is a logical collection of entities. For example, all classes of an
application are loaded under one entity group. It contains multiple entities.

Entity: This class represents an UML class. An entity is associated to itself to specify its
parent entity. An entity can have zero or one parent entity. An entity can also have zero or
more children entities.

AbstractAttribute: An entity can either have zero or more primitive attributes, or have zero
or more associated classes. This is represented by the AbstractAttribute class. It is the base
class for Association and Attribute classes.
Attribute: The class represents a primitive attribute. For example, name is an attribute of the
user entity. Attribute can be of following types:
o String attribute
Double attribute
Short attribute
Long attribute
Boolean Attribute
Date attribute
ByteArray (for BLOB/CLOB)

O O O O O O

Following diagram shows how attribute type is defined or changed in attribute.

Page 83

caBench-To-Bedside Design Document

DynamicExtensions Attribute

isCollection: Boolean
isldentified: Boolean
isPrimanykey: Boolean

1

#attribute Twpelnformation

u] i Bty i i
W GHE S EES DynamicExtensions:

Attribute Typelnf aiti {]
MRS P I e <} Doubl eAttributeType Infor mation

measurementUnits: String

DynamicExtensions::
DatesttributeType Infor mation —D

format: String A

DymamicExtensions::
FloatAttributeType Infor mation

OymamicExtensions::

StringAttribote Tupe Infor riation # measurementUnits; String
0 g OymamicExtensions::
ShortAttribute Type Infor mation
OymamicExtensions::
measurementUnits: String LongAdtribute Typelnfor nation
OhymamicExtensions::
EntedrrayAttributeType lnformation | | # measurementUnits: String
contentType: String
CymamicExtensions:: MynamicExtensions:
Bonol ean Attribute Type Infar mation Integer Atribute Typenfor mation
measurementlnits: String

Figure 60 Attribute Type Metadata

Attribute class is associated with the class “AttributeTypelnformation” that specifies the type
of the attribute.

AttributeTypelnformation: This class represents the type of the attribute. Attribute type can
be any of the above mentioned types. This class is an abstract class which is extended by all
the specific primitive attribute types like DoubleAttributeTypelnformation or
StringAttribute Typelnformation.

Role: This class describes an association’s cardinality and the association type. The class
has the following attributes

associationType: This could be two types of association: containment or linking.

Containment association type is one of Person and Address where the Person entity will
contain Address entity within it. The Address object does not exist on its own. Linking
association type is one of User and Study. Here, both the objects can be created
independently. The user can be part of multiple studies and a study can contain multiple
users.

maxCardinality: Maximum cardinality of association (for example, 1 or many)

minCardinality: Maximum cardinality of association (for example, 0, 1 or many)

name: The role name of the association.

Association: This class represents the associations that an entity can have with other
entities. E.g. a User entity is associated with Institute entity.

sourceRole: This represents the role of the association from the source context.

targetRole: This represents the role of the association from the target context.

19.1.3 Inheritance Metadata support

One of the main aspects of any application is the inheritance between its entities. So when
any object model is loaded into DE database, this hierarchy of objects should be preserved.

Page 84

caBench-To-Bedside Design Document

This section explains how inheritance is preserved in DE using the required metadata objects
of DE. Following diagram explains the required objects and relationships for inheritance.

Oymiamic ExtensionsEntity

+parentEntity 1 # inheritStrategy: int
isAbstract: boolean

Figure 61 Inheritance Metadata

Entity: Entity object represents the java class in any object model. So to maintain the
hierarchy of classes, following attributes and associations are maintained.

isAbstract. This flag maintains whether the entity is abstract or not.
inheritStrategy: This attribute stores the Hibernate’s strategy to store the actual data in the
actual database. Allowed values for this attribute are:

1. Joined subclass

2. Subclass

3. Table per concrete class.

19.14 Attribute data elements and default values

An attribute can have values that are derived from some fixed source or some user defined
set of allowable values. For example, gender attribute can have only fixed values like male
and female. Additionally, the attribute can have one of them as a default value. This
information is saved in following way. The diagram shows the way in which the allowable and
default values are stored in DE

Page 85

caBench-To-Bedside

Design Document

DymamicExtensions:

:CaDSROE

publicld: String

DynamicExtensions Attribute

isCollection: Boolean
isldentified: Boolean
isPrimarykey: Boolean

#attribute Typelnformation

)

DynamicExtensions:
UserDefinedDE

DymamicExtensions:
:DataElement

id: Long

#dataElement 0.1

#permissibleValuaCollaction

#defaulfvalue

DymamicExtensions::
7 AdtributeType Information

Figure 62 Attribute Data Elements

{of

Oy

DynamicExtensions:

Absfracilialue

Shortvalue

2

wvalue: Short

tion: String

TAAAA

i

JiVaN

t

‘Longvalue

DynamicExtensions:

DymamicExtensions:
:Booleanalue

walue: Boolean

walue: Long

Irtegeryalue

DynamicExtensions:

DymamicExtensions:
‘Stringvalue

walue: Integer

walue: String

:DoubleYalue

DymamicExtensions:

DynamicExtensions:

walue: Double

:EyteArray'yalue

:Floatyalue

walue: Float

DynamicExtensions:

DynamicExtensions:

walue: byte[]

:Datevalue

walue: Date

caDSRDE holds all the common information for all the types of data elements. Some of the
associations of this class are:
Attribute Typelnformation: Source of the allowable values is specific to the attribute type.
So to represent this information correctly, AttributeTypelnformation class is associated

O

with the DataElement so that it represents the type of source for the attribute.

AbstractValue: This class represents a value, an attribute can have. This value can be
used as a default value or as one of the allowable values. The class acts as a base class
for the entire attribute type specific value

Page 86

